4D Temporally Coherent Multi-Person Semantic Reconstruction and Segmentation

Author:

Mustafa ArminORCID,Russell Chris,Hilton Adrian

Abstract

AbstractWe introduce the first approach to solve the challenging problem of automatic 4D visual scene understanding for complex dynamic scenes with multiple interacting people from multi-view video. Our approach simultaneously estimates a detailed model that includes a per-pixel semantically and temporally coherent reconstruction, together with instance-level segmentation exploiting photo-consistency, semantic and motion information. We further leverage recent advances in 3D pose estimation to constrain the joint semantic instance segmentation and 4D temporally coherent reconstruction. This enables per person semantic instance segmentation of multiple interacting people in complex dynamic scenes. Extensive evaluation of the joint visual scene understanding framework against state-of-the-art methods on challenging indoor and outdoor sequences demonstrates a significant ($$\approx 40\%$$ 40 % ) improvement in semantic segmentation, reconstruction and scene flow accuracy. In addition to the evaluation on several indoor and outdoor scenes, the proposed joint 4D scene understanding framework is applied to challenging outdoor sports scenes in the wild captured with manually operated wide-baseline broadcast cameras.

Funder

Royal Academy of Engineering

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Reference95 articles.

1. 4d repository, http://4drepository.inrialpes.fr/. In: Institut national de recherche en informatique et en automatique (INRIA) Rhone Alpes.

2. Multiview video repository, http://cvssp.org/data/cvssp3d/. In: Centre for Vision Speech and Signal Processing, University of Surrey, UK.

3. Kundu, A., Yin, X., Fathi, A., Ross, D., Brewington, B., Funkhouser, T., & Pantofaru, C. (2020). Virtual multi-view fusion for 3d semantic segmentation. In: ECCV.

4. Gilbert, A., Trumble, M., Hilton, A. & Collomosse, J. (2020) Semantic estimation of 3d body shape and pose using minimal cameras. In: BMVC.

5. Badrinarayanan, V., Kendall, A., Cipolla, R. (2017). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. TPAMI.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3