1. Bagherinezhad, H., Horton, M., Rastegari, M., & Farhadi, A. (2018). Label refinery: Improving imagenet classification through label progression. arXiv preprint
arXiv:1805.02641
.
2. Baskin, C., Schwartz, E., Zheltonozhskii, E., Liss, N., Giryes, R., Bronstein, A. M., et al. (2018). UNIQ: Uniform noise injection for the quantization of neural networks. arXiv preprint
arXiv:1804.10969
.
3. Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. arXiv preprint, pp. 1610–02357.
4. Courbariaux, M., Bengio, Y., & David, J.-P. (2015). Binaryconnect: Training deep neural networks with binary weights during propagations. In Advances in neural information processing systems (pp. 3123–3131).
5. Feist, T. (2012). Vivado design suite. White Paper, 5, 30.