ShadingNet: Image Intrinsics by Fine-Grained Shading Decomposition

Author:

Baslamisli Anil S.ORCID,Das Partha,Le Hoang-An,Karaoglu Sezer,Gevers Theo

Abstract

AbstractIn general, intrinsic image decomposition algorithms interpret shading as one unified component including all photometric effects. As shading transitions are generally smoother than reflectance (albedo) changes, these methods may fail in distinguishing strong photometric effects from reflectance variations. Therefore, in this paper, we propose to decompose the shading component into direct (illumination) and indirect shading (ambient light and shadows) subcomponents. The aim is to distinguish strong photometric effects from reflectance variations. An end-to-end deep convolutional neural network (ShadingNet) is proposed that operates in a fine-to-coarse manner with a specialized fusion and refinement unit exploiting the fine-grained shading model. It is designed to learn specific reflectance cues separated from specific photometric effects to analyze the disentanglement capability. A large-scale dataset of scene-level synthetic images of outdoor natural environments is provided with fine-grained intrinsic image ground-truths. Large scale experiments show that our approach using fine-grained shading decompositions outperforms state-of-the-art algorithms utilizing unified shading on NED, MPI Sintel, GTA V, IIW, MIT Intrinsic Images, 3DRMS and SRD datasets.

Funder

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The shading isophotes: Model and methods for Lambertian planes and a point light;Computer Vision and Image Understanding;2024-11

2. EyeIR: Single Eye Image Inverse Rendering In the Wild;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24;2024-07-13

3. Estimating intrinsic characteristics of images for shadow removal;Computers & Graphics;2024-05

4. Realistic Fusion of Virtual Materials and Hands for AR through Intrinsic Decomposition;2023 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct);2023-10-16

5. PanoStyle: Semantic, Geometry-Aware and Shading Independent Photorealistic Style Transfer for Indoor Panoramic Scenes;2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW);2023-10-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3