GenKL: An Iterative Framework for Resolving Label Ambiguity and Label Non-conformity in Web Images Via a New Generalized KL Divergence

Author:

Huang Xia,Chong Kai Fong ErnestORCID

Abstract

AbstractWeb image datasets curated online inherently contain ambiguous in-distribution instances and out-of-distribution instances, which we collectively callnon-conforming(NC) instances. In many recent approaches for mitigating the negative effects of NC instances, the core implicit assumption is that the NC instances can be found via entropy maximization. For “entropy” to be well-defined, we are interpreting the output prediction vector of an instance as the parameter vector of a multinomial random variable, with respect to some trained model with a softmax output layer. Hence, entropy maximization is based on the idealized assumption that NC instances have predictions that are “almost” uniformly distributed. However, in real-world web image datasets, there are numerous NC instances whose predictions are far from being uniformly distributed. To tackle the limitation of entropy maximization, we propose$$(\alpha , \beta )$$(α,β)-generalized KL divergence,$${\mathcal {D}}_{\text {KL}}^{\alpha , \beta }(p\Vert q)$$DKLα,β(pq), which can be used to identify significantly more NC instances. Theoretical properties of$${\mathcal {D}}_{\text {KL}}^{\alpha , \beta }(p\Vert q)$$DKLα,β(pq)are proven, and we also show empirically that a simple use of$${\mathcal {D}}_{\text {KL}}^{\alpha , \beta }(p\Vert q)$$DKLα,β(pq)outperforms all baselines on the NC instance identification task. Building upon$$(\alpha ,\beta )$$(α,β)-generalized KL divergence, we also introduce a new iterative training framework,GenKL, that identifies and relabels NC instances. When evaluated on three web image datasets, Clothing1M, Food101/Food101N, and mini WebVision 1.0, we achieved new state-of-the-art classification accuracies:$$81.34\%$$81.34%,$$85.73\%$$85.73%and$$78.99\%$$78.99%/$$92.54\%$$92.54%(top-1/top-5), respectively.

Funder

National Research Foundation Singapore

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3