1. Achlioptas, P., Diamanti, O., Mitliagkas, I., & Guibas, L. J. (2018). Learning representations and generative models for 3D point clouds. In J. G. Dy, & A. Krause (Eds.), Proceedings of the 35th international conference on machine learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10–15, 2018, PMLR, Proceedings of machine learning research (Vol. 80, pp. 40–49).
2. Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., & Xiao, J. (2015). Shapenet: An information-rich 3D model repository. arXiv preprint arXiv:1512.03012
3. Charles R. Q., Su, H., Kaichun, M., & Guibas L. J. (2017). PointNet: Deep learning on point sets for 3D classification and segmentation. In 2017 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 77–85).
4. Dai, A., Qi, C. R., & Nießner, M. (2017). Shape completion using 3D-encoder-predictor CNNs and shape synthesis. In 2017 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 6545–6554).
5. Fan, H., Su, H., & Guibas, L. (2017) A point set generation network for 3D object reconstruction from a single image. In 2017 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2463–2471).