Adaptive Channel Selection for Robust Visual Object Tracking with Discriminative Correlation Filters

Author:

Xu TianyangORCID,Feng Zhenhua,Wu Xiao-Jun,Kittler Josef

Abstract

AbstractDiscriminative Correlation Filters (DCF) have been shown to achieve impressive performance in visual object tracking. However, existing DCF-based trackers rely heavily on learning regularised appearance models from invariant image feature representations. To further improve the performance of DCF in accuracy and provide a parsimonious model from the attribute perspective, we propose to gauge the relevance of multi-channel features for the purpose of channel selection. This is achieved by assessing the information conveyed by the features of each channel as a group, using an adaptive group elastic net inducing independent sparsity and temporal smoothness on the DCF solution. The robustness and stability of the learned appearance model are significantly enhanced by the proposed method as the process of channel selection performs implicit spatial regularisation. We use the augmented Lagrangian method to optimise the discriminative filters efficiently. The experimental results obtained on a number of well-known benchmarking datasets demonstrate the effectiveness and stability of the proposed method. A superior performance over the state-of-the-art trackers is achieved using less than $$10\%$$ 10 % deep feature channels.

Funder

Engineering and Physical Sciences Research Council

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Reference73 articles.

1. Avidan, S. (2004). Support vector tracking. IEEE transactions on pattern analysis and machine intelligence, 26(8), 1064–1072.

2. Babenko, B., Yang, M. H., & Belongie, S. (2011). Robust object tracking with online multiple instance learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8), 1619–1632.

3. Bao, C., Wu, Y., Ling, H., Ji, H. (2012) Real time robust l1 tracker using accelerated proximal gradient approach. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1830–1837.

4. Bay, H., Tuytelaars, T., Van Gool, L. (2006) Surf: Speeded up robust features. In: European conference on computer vision, Springer, pp 404–417.

5. Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., & Torr, P. H. S. (2016). Staple: Complementary learners for real-time tracking. IEEE Conference on Computer Vision and Pattern Recognition, 38, 1401–1409.

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Memory Prompt for Spatiotemporal Transformer Visual Object Tracking;IEEE Transactions on Artificial Intelligence;2024-08

2. Learning Feature Restoration Transformer for Robust Dehazing Visual Object Tracking;International Journal of Computer Vision;2024-07-12

3. Single target tracking in high-resolution satellite videos: a comprehensive review;Geo-spatial Information Science;2024-04-16

4. Learning Adaptive Spatio-Temporal Inference Transformer for Coarse-to-Fine Animal Visual Tracking: Algorithm and Benchmark;International Journal of Computer Vision;2024-02-12

5. Pluggable Attack for Visual Object Tracking;IEEE Transactions on Information Forensics and Security;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3