Abstract
AbstractPredicting future actions is an essential feature of intelligent systems and embodied AI. However, compared to the traditional recognition tasks, the uncertainty of the future and the reasoning ability requirement make prediction tasks very challenging and far beyond solved. In this field, previous methods usually care more about the model architecture design but little attention has been put on how to train models with a proper learning policy. To this end, in this work, we propose a simple but effective training strategy, Dynamic Context Removal (DCR), which dynamically schedules the visibility of context in different training stages. It follows the human-like curriculum learning process, i.e., gradually removing the event context to increase the prediction difficulty till satisfying the final prediction target. Besides, we explore how to train robust models that give consistent predictions at different levels of observable context. Our learning scheme is plug-and-play and easy to integrate widely-used reasoning models including Transformer and LSTM, with advantages in both effectiveness and efficiency. We study two action prediction problems, i.e., Video Action Anticipation and Early Action Recognition. In extensive experiments, our method achieves state-of-the-art results on several widely-used benchmarks.
Funder
National Natural Science Foundation of China
Shanghai Municipal Science and Technology Major Project
SHEITC
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献