Learning General and Specific Embedding with Transformer for Few-Shot Object Detection

Author:

Zhang Xu,Chen Zhe,Zhang Jing,Liu Tongliang,Tao DachengORCID

Abstract

AbstractFew-shot object detection (FSOD) studies how to detect novel objects with few annotated examples effectively. Recently, it has been demonstrated that decent feature embeddings, including the general feature embeddings that are more invariant to visual changes and the specific feature embeddings that are more discriminative for different object classes, are both important for FSOD. However, current methods lack appropriate mechanisms to sensibly cooperate both types of feature embeddings based on their importance to detecting objects of novel classes, which may result in sub-optimal performance. In this paper, to achieve more effective FSOD, we attempt to explicitly encode both general and specific feature embeddings using learnable tensors and apply a Transformer to help better incorporate them in FSOD according to their relations to the input object features. We thus propose a Transformer-based general and specific embedding learning (T-GSEL) method for FSOD. In T-GSEL, learnable tensors are employed in a three-stage pipeline, encoding feature embeddings in general level, intermediate level, and specific level, respectively. In each stage, we apply a Transformer to first model the relations of the corresponding embedding to input object features and then apply the estimated relations to refine the input features. Meanwhile, we further introduce cross-stage connections between embeddings of different stages to make them complement and cooperate with each other, delivering general, intermediate, and specific feature embeddings stage by stage and utilizing them together for feature refinement in FSOD. In practice, a T-GSEL module is easy to inject. Extensive empirical results further show that our proposed T-GSEL method achieves compelling FSOD performance on both PASCAL VOC and MS COCO datasets compared with other state-of-the-art approaches.

Funder

University of Sydney

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3