1. Achlioptas, P., Diamanti, O., Mitliagkas, I. & Guibas, L. (2018). Learning representations and generative models for 3D point clouds. International conference on machine learning (pp. 40–49).
2. Alonso, I., Riazuelo, L., Montesano, L., & Murillo, A. C. (2020). 3d-mininet: Learning a 2D representation from point clouds for fast and efficient 3D LiDAR semantic segmentation. IEEE Robotics and Automation Letters, 5(4), 5432–5439.
3. Armeni, I., Sener, O., Zamir, A.R., Jiang, H., Brilakis, I., Fischer, M. & Savarese, S. (2016). 3D semantic parsing of large-scale indoor spaces. Proceedings of the ieee conference on computer vision and pattern recognition (pp. 1534–1543).
4. Asano, Y.M., Rupprecht, C. & Vedaldi, A. (2020). Self-labelling via simultaneous clustering and representation learning. 8th International conference on learning representations, ICLR 2020, Addis Ababa, Ethiopia, April 26–30, 2020.
5. Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Gall, J., & Stachniss, C. (2021). Towards 3D LiDAR-based semantic scene understanding of 3D point cloud sequences: The SemanticKITTI Dataset. The International Journal of Robotics Research, 40(8–9), 959–967.