1. Caterini, A. L., & Loaiza-Ganem, G. (2021). Entropic issues in likelihood-based ood detection. arXiv:2109.10794.
2. Cen, J., Luan, D., Zhang, S., Pei, Y., Zhang, Y., Zhao, D., Shen, S., & Chen, Q. (2023). The devil is in the wrongly-classified samples: Towards unified open-set recognition. In The 11th international conference on learning representations.
3. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., & Vedaldi, A. (2014). Describing textures in the wild. In 2014 IEEE conference on computer vision and pattern recognition (pp. 3606–3613).
4. Corbière, C., Thome, N., Bar-Hen, A., Cord, M., & Pérez, P. (2019). Addressing failure prediction by learning model confidence. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in neural information processing systems 32 (pp. 2902–2913). Curran Associates Inc.
5. Dhamija, A., Gunther, M., Ventura, J., & Boult, T. (2020). The overlooked elephant of object detection: Open set. In Proceedings of the IEEE/CVF winter conference on applications of computer vision (WACV).