Funder
the National Natural Science Foundation of China
CCF-DiDi GAIA Collaborative Research Funds for Young Scholars
Publisher
Springer Science and Business Media LLC
Reference132 articles.
1. Ahmed, S. M., Raychaudhuri, D. S., Paul, S., Oymak, S., & Roy-Chowdhury, A. K. (2021). Unsupervised multi-source domain adaptation without access to source data. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10103–10112).
2. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., & Mané, D. (2016). Concrete problems in AI safety. arXiv:1606.06565
3. Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv:2004.10934
4. Bodla, N., Singh, B., Chellappa, R., & Davis, L. S. (2017). Soft-NMS–improving object detection with one line of code. In Proceedings of the IEEE international conference on computer vision (pp. 5561–5569).
5. Cai, Q., Pan, Y., Ngo, C. W., Tian, X., Duan, L., Yao, T. (2019). Exploring object relation in mean teacher for cross-domain detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 11457–11466).