Meet JEANIE: A Similarity Measure for 3D Skeleton Sequences via Temporal-Viewpoint Alignment

Author:

Wang LeiORCID,Liu JunORCID,Zheng LiangORCID,Gedeon TomORCID,Koniusz PiotrORCID

Abstract

AbstractVideo sequences exhibit significant nuisance variations (undesired effects) of speed of actions, temporal locations, and subjects’ poses, leading to temporal-viewpoint misalignment when comparing two sets of frames or evaluating the similarity of two sequences. Thus, we propose Joint tEmporal and cAmera viewpoiNt alIgnmEnt (JEANIE) for sequence pairs. In particular, we focus on 3D skeleton sequences whose camera and subjects’ poses can be easily manipulated in 3D. We evaluate JEANIE on skeletal Few-shot Action Recognition (FSAR), where matching well temporal blocks (temporal chunks that make up a sequence) of support-query sequence pairs (by factoring out nuisance variations) is essential due to limited samples of novel classes. Given a query sequence, we create its several views by simulating several camera locations. For a support sequence, we match it with view-simulated query sequences, as in the popular Dynamic Time Warping (DTW). Specifically, each support temporal block can be matched to the query temporal block with the same or adjacent (next) temporal index, and adjacent camera views to achieve joint local temporal-viewpoint warping. JEANIE selects the smallest distance among matching paths with different temporal-viewpoint warping patterns, an advantage over DTW which only performs temporal alignment. We also propose an unsupervised FSAR akin to clustering of sequences with JEANIE as a distance measure. JEANIE achieves state-of-the-art results on NTU-60, NTU-120, Kinetics-skeleton and UWA3D Multiview Activity II on supervised and unsupervised FSAR, and their meta-learning inspired fusion.

Funder

Australian National University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3