Animal Pose Tracking: 3D Multimodal Dataset and Token-based Pose Optimization

Author:

Patel MahirORCID,Gu YiwenORCID,Carstensen Lucas C.ORCID,Hasselmo Michael E.,Betke Margrit

Abstract

AbstractAccurate tracking of the 3D pose of animals from video recordings is critical for many behavioral studies, yet there is a dearth of publicly available datasets that the computer vision community could use for model development. We here introduce the Rodent3D dataset that records animals exploring their environment and/or interacting with each other with multiple cameras and modalities (RGB, depth, thermal infrared). Rodent3D consists of 200 min of multimodal video recordings from up to three thermal and three RGB-D synchronized cameras (approximately 4 million frames). For the task of optimizing estimates of pose sequences provided by existing pose estimation methods, we provide a baseline model called OptiPose. While deep-learned attention mechanisms have been used for pose estimation in the past, with OptiPose, we propose a different way by representing 3D poses as tokens for which deep-learned context models pay attention to both spatial and temporal keypoint patterns. Our experiments show how OptiPose is highly robust to noise and occlusion and can be used to optimize pose sequences provided by state-of-the-art models for animal pose estimation.

Funder

Office of Naval Research

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Measurement Method for Body Parameters of Mongolian Horses Based on Deep Learning and Machine Vision;Applied Sciences;2024-06-28

2. Open-Vocabulary Animal Keypoint Detection with Semantic-Feature Matching;International Journal of Computer Vision;2024-06-25

3. The Poses for Equine Research Dataset (PFERD);Scientific Data;2024-05-15

4. CattleEyeView: A Multi-task Top-down View Cattle Dataset for Smarter Precision Livestock Farming;2023 IEEE International Conference on Visual Communications and Image Processing (VCIP);2023-12-04

5. 3D Implicit Transporter for Temporally Consistent Keypoint Discovery;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3