ISHIGAKI Retrieval System Using 3D Shape Matching and Combinatorial Optimization

Author:

Koutaki GouORCID,Ando Sakino,Shirai Keiichiro,Kishigami Tsuyoshi

Abstract

AbstractIn April 2016, a massive earthquake with a magnitude of 7.3 struck Kumamoto region, Japan, causing major devastation. One of the structures that were damaged in Kumamoto was Kumamoto Castle, a cultural asset of great significance in Japan. The stone retaining wall “ishigaki” that formed the foundation of the castle collapsed, and the superstructure was destroyed. The number of stones is estimated to be more than 70,000, and restoration work is anticipated to take more than 20 years. Since each of the stones is an important cultural asset, the broken stone structure needed to be restored to its original state in order not to lose its cultural value forever. In addition, the fallen stones need to be returned to their original positions in the ishigakis. In similar cases, non-automatic visual verification was used. However, for Kumamoto Castle, this would have been impossible because a large number of stones were displaced as a result of the collapse. The purpose of this project is to provide support for the restoration work by matching the stones that fell down after the collapse with those before the collapse using information technology, such as computer vision and optimization technologies. Specifically, we captured photographic images of the stones before and after the collapse to match them. The technical contributions of this study are as follows: (a) To estimate the scale and surface orientation of the stones, we exploit 3D model construction from the images. (b) To solve the jigsaw-puzzle-like problem of reassembling the stone fragments, we exploit the combination of a customized iterative closest point (ICP) algorithm for shape position matching and an assignment algorithm to find the best pairs of stones before and after the collapse by using the matching degree obtained from ICP. Here, only the 2D shape of the stones before the collapse can be used due to the small number of photos available. In contrast, a detailed 3D shape can be obtained from the stones after their collapse. We matched these asymmetric data in 2D and 3D to enable a comprehensive reconstruction. (c) We developed a user-friendly graphical user interface system that was used by actual masons without special knowledge. The developed system was used to match the ishigaki of a turret, Iidamaru. As a result, we succeeded in identifying 337 stones, or approximately 90% of the 370 images. These results are expected to be useful for and were used as a blueprint during actual restoration work.

Funder

Japan Science and Technology Agency

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. QPert: Query Perturbation to improve shape retrieval algorithms;Multimedia Tools and Applications;2023-08-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3