DOVE: Learning Deformable 3D Objects by Watching Videos

Author:

Wu ShangzheORCID,Jakab Tomas,Rupprecht Christian,Vedaldi Andrea

Abstract

AbstractLearning deformable 3D objects from 2D images is often an ill-posed problem. Existing methods rely on explicit supervision to establish multi-view correspondences, such as template shape models and keypoint annotations, which restricts their applicability on objects “in the wild”. A more natural way of establishing correspondences is by watching videos of objects moving around. In this paper, we present DOVE, a method that learns textured 3D models of deformable object categories from monocular videos available online, without keypoint, viewpoint or template shape supervision. By resolving symmetry-induced pose ambiguities and leveraging temporal correspondences in videos, the model automatically learns to factor out 3D shape, articulated pose and texture from each individual RGB frame, and is ready for single-image inference at test time. In the experiments, we show that existing methods fail to learn sensible 3D shapes without additional keypoint or template supervision, whereas our method produces temporally consistent 3D models, which can be animated and rendered from arbitrary viewpoints. Project page: https://dove3d.github.io/.

Funder

Facebook

Innovate UK

Department of Engineering Science, University of Oxford

Engineering and Physical Sciences Research Council

Clarendon Fund

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Estimation of 3D Poses and Shapes of Animals from Oblique Drone Imagery;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2024-06-11

2. Recent Trends in 3D Reconstruction of General Non‐Rigid Scenes;Computer Graphics Forum;2024-04-30

3. SceNeRFlow: Time-Consistent Reconstruction of General Dynamic Scenes;2024 International Conference on 3D Vision (3DV);2024-03-18

4. Viewset Diffusion: (0-)Image-Conditioned 3D Generative Models from 2D Data;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

5. PPR: Physically Plausible Reconstruction from Monocular Videos;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3