1. Alrasheedi, F., Zhong, X., & Huang, P.-C. (2023). Padding module: Learning the padding in deep neural networks. IEEE Access, 11, 7348–7357.
2. Alsallakh, B., Kokhlikyan, N., Miglani, V., Yuan, J., & Reblitz-Richardson, O. (2020). Mind the pad-CNNs can develop blind spots. In International conference on learning representations.
3. Bai, Q., Xu, Y., Zhu, J., Xia, W., Yang, Y., & Shen, Y. (2022). High-fidelity GAN inversion with padding space. In European Conference on Computer Vision (pp. 36–53).
4. Brendel, W., & Bethge, M. (2019). Approximating CNNs with bag-of-local-features models works surprisingly well on imagenet. arXiv:1904.00760.
5. Brock, A., Donahue, J., & Simonyan, K. (2018). Large scale GAN training for high fidelity natural image synthesis. In International conference on learning representations.