1. Alonso, I., Riazuelo, L., Montesano, L., & Murillo, A. C. (2020). 3d-mininet: Learning a 2d representation from point clouds for fast and efficient 3d lidar semantic segmentation. arXiv preprint arXiv:2002.10893.
2. Altindis, S.F., Dalva, Y., & Dundar, A. (2021). Benchmarking the robustness of instance segmentation models. arXiv preprint arXiv:2109.01123.
3. Bai, X., Hu, Z., Zhu, X., Huang, Q., Chen, Y., Fu, H., & Tai, C.- L. (2022). Transfusion: Robust lidar-camera fusion for 3d object detection with transformers. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1090–1099).
4. Barbu, A., Mayo, D., Alverio, J., Luo, W., Wang, C., Gutfreund, D., ... Katz, B. (2019). Objectnet: A large-scale bias-controlled dataset for pushing the limits of object recognition models. In Advances in neural information processing systems, Vol. 32.
5. Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., & Gall, J. (2019). Semantickitti: A dataset for semantic scene understanding of lidar sequences. In Proceedings of the IEEE international conference on computer vision (pp. 9297–9307).