1. , C.R., Su, H., Mo, K., & Guibas, L.J. (2017). Pointnet: Deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660.
2. Aygun, M., Osep, A., Weber, M., Maximov, M., Stachniss, C., Behley, J., & Leal-Taixé, L. (2021). 4d panoptic lidar segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5527–5537.
3. Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., & Gall, J. (2019). Semantickitti: A dataset for semantic scene understanding of lidar sequences. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9297–9307.
4. Boulch, A., Le Saux, B., & Audebert, N. (2017). Unstructured point cloud semantic labeling using deep segmentation networks. 3dor@ eurographics, 3, 1–8.
5. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A., Pan, Y., Baldan, G., & Beijbom, O. (2020). nuscenes: A multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631.