Abstract
AbstractWe propose a method for eliminating the temporal illumination variations in whisk-broom (point-scan) hyperspectral imaging. Whisk-broom scanning is useful for acquiring a spatial measurement using a pixel-based hyperspectral sensor. However, when it is applied to outdoor cultural heritages, temporal illumination variations become an issue due to the lengthy measurement time. As a result, the incoming illumination spectra vary across the measured image locations because different locations are measured at different times. To overcome this problem, in addition to the standard raster scan, we propose an additional perpendicular scan that traverses the raster scan. We show that this additional scan allows us to infer the illumination variations over the raster scan. Furthermore, the sparse structure in the illumination spectrum is exploited to robustly eliminate these variations. We quantitatively show that a hyperspectral image captured under sunlight is indeed affected by temporal illumination variations, that a Naïve mitigation method suffers from severe artifacts, and that the proposed method can robustly eliminate the illumination variations. Finally, we demonstrate the usefulness of the proposed method by capturing historic stained-glass windows of a French cathedral.
Funder
Japan Society for the Promotion of Science
Core Research for Evolutional Science and Technology
Ministère des Affaires Étrangères
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献