Experimental Investigation of Flow Separation Control over Airfoil by Upper Surface Flap with a Gap

Author:

Hao LishuORCID,Gao Yongwei,Wei Binbin

Abstract

AbstractThis paper focused on the effects of the flap with a tiny gap on the flow separation over the NPU-WA-180 airfoil. The effects of the geometric parameters of the flaps, such as the flap gap height, angle, and position, were investigated. The study showed that the flap can significantly improve the stall features of airfoil in a limited phase of angle of attack (AoA), and increase lift and reduce drag at a high AoA. It can increase the lift coefficient and drag coefficient in the case of high AoAs, and the angle range of the lift augmentation and drag reduction can reach more than 9°. Furthermore, an excessively large gap is not conducive to the improvement of the airfoil stall performance. The flap angle plays a key role in the airfoil stall characteristic. As the flap angle decreases, the angle range of improving airfoil stall characteristics becomes larger, the pitching moment increment becomes smaller. However, the maximum lift increment and the effect of the drag reduction will decrease. And the effects of the position of the flap on the airfoil performance were also studied. Considering the maximum lift coefficient and drag coefficients in large AoA, the Type1 installed at the 0.7c position has the best effect; from the perspective of delayed stall, the Type1 installed at the 0.6c position has the best delay effect. These results can provide the data and theoretical support for the flap application in engineering.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Aerospace Engineering,General Materials Science,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3