Abstract
AbstractA cable-driven model support concept is suggested and implemented in this paper. In this case, it is a cable suspension and balance system (CSBS), which has the advantages of low support interference and reduced vibration responses for effective wind tunnel tests. This system is designed for both model motion control and aerodynamic load measurements. In the CSBS, the required position or the attitude of the test model is realized by eight motors, which adjust the length, velocity, and acceleration of the corresponding cables. Aerodynamic load measurements are accomplished by a cable balance consisting of eight load cells connected to the assigned cables. The motion responses and load measurement outputs were in good agreement with the reference data. The effectiveness of the CSBS against aerodynamic interference and vibration is experimentally demonstrated through comparative tests with a rear sting and a crescent sting support (CSS). The advantages of the CSBS are examined through several wind tunnel tests of a NACA0015 airfoil model. The cable support of the CSBS clearly showed less aerodynamic interference than the rear sting with a CSS, judging from the drag coefficient profile. Additionally, the CSBS showed excellent vibration suppression characteristics at all angles of attack.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Aerospace Engineering,General Materials Science,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献