1. Agarwal, A., Wainwright, M.J., Bartlett, P.L., Ravikumar, P.K.: Information–theoretic lower bounds on the oracle complexity of convex optimization. In: Advances in Neural Information Processing Systems, pp. 1–9 (2009)
2. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. arXiv preprint arXiv:1606.04838 (2016)
3. Beck, A.: First-Order Methods in Optimization, vol. 25. SIAM, Philadelphia (2017)
4. Boyd, S., Mutapcic, A.: Subgradient methods. Lecture notes of EE364b, Stanford University, Winter Quarter, 2013 (2013)
5. Bottou, L.: Stochastic gradient learning in neural networks. Proc. Neuro-Nımes 91(8), 12 (1991)