Abstract
AbstractLiouville’s equation on phase space in geometrical optics describes the evolution of an energy distribution through an optical system, which is discontinuous across optical interfaces. The discontinuous Galerkin spectral element method is conservative and can achieve higher order of convergence locally, making it a suitable method for this equation. When dealing with optical interfaces in phase space, non-local boundary conditions arise. Besides being a difficulty in itself, these non-local boundary conditions must also satisfy energy conservation constraints. To this end, we introduce an energy conservative treatment of optical interfaces. Numerical experiments are performed to prove that the method obeys energy conservation. Furthermore, the method is compared to the industry standard ray tracing. The numerical experiments show that the discontinuous Galerkin spectral element method outperforms ray tracing by reducing the computation time by up to three orders of magnitude for an error of $$10^{-6}$$
10
-
6
.
Funder
Stichting voor de Technische Wetenschappen
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,General Engineering,Theoretical Computer Science,Software,Applied Mathematics,Computational Mathematics,Numerical Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献