Skip to main content
Log in

Fast SVD-Based Linear Elastic Eigenvalue Problem Solver for Band Structures of 3D Phononic Crystals

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this article, a Fast Linear Elastic Eigenvalue Problem Solver (FLEEPS) is developed to calculate the band structures of three-dimensional (3D) isotropic phononic crystals (PnCs). In brief, FLEEPS solves in linear time complexity the smallest few eigenvalues and associated eigenvectors of the linear elastic eigenvalue problem originating from the finite difference discretization of the frequency-domain linear elastic wave equation. Notably, FLEEPS employs the weighted singular value decomposition based preconditioner to greatly improve the convergence rate of the conjugate gradient iteration, and uses the fast Fourier transform algorithm to accelerate this preconditioner times a vector, based on the structured decomposition of the dense unitary factor T of this preconditioner. Band structure calculations of several 3D isotropic PnCs are presented to showcase the capabilities of FLEEPS. The preliminary MATLAB implementation of FLEEPS is available at https://github.com/FAME-GPU/FLEEPS-MATLAB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code Availability

The MATLAB codes produced for the current study are available in the GitHub repository https://github.com/FAME-GPU/FLEEPS-MATLAB.

Notes

  1. It is much better for the layperson to get acquainted with the component-wise velocity-stress formulation of (1), which is detailed in Sect. A, before jumping to (2).

  2. The Bravais lattice is a fundamental concept to describe the repeating pattern of the crystal structure, which has been abstracted into a space-filling array of points generated by three lattice translation vectors, \(\varvec{a}_1\), \(\varvec{a}_2\) and \(\varvec{a}_3\). There are totally fourteen Bravais lattices, based on the symmetry of these periodically arranged points.

  3. The reciprocal lattice can be regarded as the dual to the Bravais lattice, with lattice vectors \(\varvec{a}_1\), \(\varvec{a}_2\) and \(\varvec{a}_3\) of the Bravais lattice replaced by the reciprocal lattice translation vectors \(\textbf{b}_1\), \(\textbf{b}_2\) and \(\textbf{b}_3\) defined by \([\textbf{b}_1,\textbf{b}_2,\textbf{b}_3]=2\pi [\varvec{a}_1,\varvec{a}_2,\varvec{a}_3]^{-\top }\). The Brillouin zone is a special unit cell of the reciprocal lattice that is centered around a lattice point of the reciprocal lattice and is invariant under all symmetry operations of the reciprocal lattice and has the same volume as the primitive unit cell of the reciprocal lattice.

References

  1. Graves, R.W.: Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull. Seismol. Soc. Am. 86(4), 1091–1106 (1996). https://doi.org/10.1785/BSSA0860041091

    Article  Google Scholar 

  2. Randall, C.J.: Absorbing boundary condition for the elastic wave equation: velocity-stress formulation. Geophysics 54(9), 1141–1152 (1989). https://doi.org/10.1190/1.1442749

    Article  Google Scholar 

  3. Sadd, M.H.: Elasticity: Theory, Applications and Numerics, 3rd edn. Elsevier, Cambridge (2014)

    Google Scholar 

  4. Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics, vol. 1, 2nd edn. Wiley, New York (2019)

    Google Scholar 

  5. Kittel, C.: Introduction to Solid State Physics. Wiley, New York (2005)

    Google Scholar 

  6. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (2008)

    Google Scholar 

  7. Vasseur, J.O., Deymier, P.A., Chenni, B., Djafari-Rouhani, B., Dobrzynski, L., Prevost, D.: Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals. Phys. Rev. Lett. 86, 3012–3015 (2001). https://doi.org/10.1103/PhysRevLett.86.3012

    Article  Google Scholar 

  8. Li, Z.-Y., Ho, K.-M.: Light propagation in semi-infinite photonic crystals and related waveguide structures. Phys. Rev. B 68, 155101 (2003). https://doi.org/10.1103/PhysRevB.68.155101

    Article  Google Scholar 

  9. Kafesaki, M., Economou, E.N.: Multiple-scattering theory for three-dimensional periodic acoustic composites. Phys. Rev. B 60, 11993–12001 (1999). https://doi.org/10.1103/PhysRevB.60.11993

    Article  Google Scholar 

  10. Li, L.-M., Zhang, Z.-Q.: Multiple-scattering approach to finite-sized photonic band-gap materials. Phys. Rev. B 58, 9587–9590 (1998). https://doi.org/10.1103/PhysRevB.58.9587

    Article  Google Scholar 

  11. Liu, Z., Chan, C.T., Sheng, P., Goertzen, A.L., Page, J.H.: Elastic wave scattering by periodic structures of spherical objects: theory and experiment. Phys. Rev. B 62, 2446–2457 (2000). https://doi.org/10.1103/PhysRevB.62.2446

    Article  Google Scholar 

  12. Chin, E.B., Mokhtari, A.A., Srivastava, A., Sukumar, N.: Spectral extended finite element method for band structure calculations in phononic crystals. J. Comput. Phys. 427, 110066 (2021). https://doi.org/10.1016/j.jcp.2020.110066

    Article  MathSciNet  Google Scholar 

  13. Veres, I.A., Berer, T., Matsuda, O.: Complex band structures of two dimensional phononic crystals: analysis by the finite element method. J. Appl. Phys. 114(8), 083519 (2013). https://doi.org/10.1063/1.4819209

    Article  Google Scholar 

  14. Sun, J.-H., Wu, T.-T.: Propagation of surface acoustic waves through sharply bent two-dimensional phononic crystal waveguides using a finite-difference time-domain method. Phys. Rev. B 74(17), 174305 (2006). https://doi.org/10.1103/PhysRevB.74.174305

    Article  Google Scholar 

  15. Sun, J.-H., Wu, T.-T.: Propagation of acoustic waves in phononic-crystal plates and waveguides using a finite-difference time-domain method. Phys. Rev. B 76(10), 104304 (2007). https://doi.org/10.1103/PhysRevB.76.104304

    Article  Google Scholar 

  16. Tanaka, Y., Tomoyasu, Y., Tamura, S.-I.: Band structure of acoustic waves in phononic lattices: two-dimensional composites with large acoustic mismatch. Phys. Rev. B 62(11), 7387 (2000). https://doi.org/10.1103/PhysRevB.62.7387

    Article  Google Scholar 

  17. Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966). https://doi.org/10.1109/TAP.1966.1138693

    Article  Google Scholar 

  18. Chern, R.-L., Hsieh, H.-E., Huang, T.-M., Lin, W.-W., Wang, W.: Singular value decompositions for single-curl operators in three-dimensional Maxwell’s equations for complex media. SIAM J. Matrix Anal. Appl. 36, 203–224 (2015). https://doi.org/10.1137/140958748

    Article  MathSciNet  Google Scholar 

  19. Huang, T.-M., Hsieh, H.-E., Lin, W.-W., Wang, W.: Eigendecomposition of the discrete double-curl operator with application to fast eigensolver for three dimensional photonic crystals. SIAM J. Matrix Anal. Appl. 34, 369–391 (2013). https://doi.org/10.1137/120872486

    Article  MathSciNet  Google Scholar 

  20. Huang, T.-M., Hsieh, H.-E., Lin, W.-W., Wang, W.: Matrix representation of the double-curl operator for simulating three dimensional photonic crystals. Math. Comput. Model. 58, 379–392 (2013). https://doi.org/10.1016/j.mcm.2012.11.008

    Article  MathSciNet  Google Scholar 

  21. Lyu, X.-L., Li, T., Huang, T.-M., Lin, J.-W., Lin, W.-W., Wang, S.: FAME: fast algorithms for Maxwell’s Equations for three-dimensional photonic crystals. ACM Trans. Math. Softw. 47(3), 1–24 (2021). https://doi.org/10.1145/3446329

    Article  MathSciNet  Google Scholar 

  22. Lyu, X.-L., Li, T., Lin, J.-W., Huang, T.-M., Lin, W.-W., Tian, H.: Solving Maxwell eigenvalue problems for three dimensional isotropic photonic crystals with fourteen Bravais lattices. J. Comput. Appl. Math. 410, 114220 (2022). https://doi.org/10.1016/j.cam.2022.114220

    Article  MathSciNet  Google Scholar 

  23. MATLAB: Version 9.8.0 (R2020a). The MathWorks Inc., Natick, Massachusetts (2020)

  24. Kittel, C.: Introduction to Solid State Physics. Wiley, New York (2005)

    Google Scholar 

  25. Einarsdotter, K., Sadigh, B., Grimvall, G., Ozolins, V.: Phonon instabilities in FCC and BCC tungsten. Phys. Rev. Lett. 79(11), 2073 (1997). https://doi.org/10.1103/PhysRevLett.79.2073

    Article  Google Scholar 

  26. Taniker, S., Yilmaz, C.: Phononic gaps induced by inertial amplification in bcc and FCC lattices. Phys. Lett. A 377(31–33), 1930–1936 (2013). https://doi.org/10.1103/PhysRevB.76.054309

    Article  Google Scholar 

  27. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston (1996)

    Google Scholar 

  28. COMSOL Multiphysics® v 5.5.0. COMSOL Inc., Stockholm, Sweden (2020). http://www.comsol.com

  29. Mehl, M.J., Hicks, D., Toher, C., Levy, O., Hanson, R.M., Hart, G.L.W., Curtarolo, S.: The AFLOW library of crystallographic prototypes: Part 1. Comput. Mater. Sci. 136, 1–828 (2017). https://doi.org/10.1016/j.commatsci.2017.01.017

    Article  Google Scholar 

  30. Dennis, J.E.J., Traub, J.F., Weber, P.R.: On the matrix polynomial, Lambda-matrix and block eigenvalue problems. Technical Report 71-109 (December 1971). Available online at https://ecommons.cornell.edu/handle/1813/5954

Download references

Acknowledgements

This work was partially supported by National Centre of Theoretical Sciences (NCTS) in Taiwan, TianHe-2 National Supercomputing Center in Guangzhou and the Big Data Computing Center in Southeast University. X.-L. Lyu was partially supported by Jiangsu Province Excellent Post-Doctoral Program 2023ZB142 in China. H. Tian sincerely thanks the hospitality of Nanjing Center for Applied Mathematics (NCAM) during the initialization of this work. T. Li was supported in parts by the National Natural Science Foundation of China (NSFC) 12371377. W.-W. Lin was partially supported by the Ministry of Science and Technology in Taiwan (MoST) 110-2115-M-A49-004-.

Funding

This work was partially supported by the National Natural Science Foundation of China (Grant No. 12371377), and the Ministry of Science and Technology in Taiwan (Grant No. 110-2115-M-A49-004-).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Tian.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

The Component-Wise Formulation of (1)

In order to facilitate the reader to derive (4), we write down the component-wise velocity-stress formulation of (1) in detail as follows:

$$\begin{aligned} \imath \omega \rho v_x&= \partial _x \tau _{xx} + \partial _y \tau _{xy} + \partial _z \tau _{xz},\quad \imath \omega \rho v_y= \partial _x \tau _{xy} + \partial _y \tau _{yy} + \partial _z \tau _{yz},\\ \imath \omega \rho v_z&= \partial _x \tau _{xz} + \partial _y \tau _{yz} + \partial _z \tau _{zz},\\ \imath \omega \tau _{xx}&=(\lambda +2\mu )\partial _x v_x + \lambda \partial _y v_y +\lambda \partial _z v_z, \quad \imath \omega \tau _{yz}= \mu (\partial _z v_y + \partial _y v_z),\\ \imath \omega \tau _{yy}&= \lambda \partial _x v_x + (\lambda +2\mu )\partial _y v_y+\lambda \partial _z v_z,\quad \imath \omega \tau _{xz}= \mu (\partial _z v_x + \partial _x v_z),\\ \imath \omega \tau _{zz}&= \lambda \partial _x v_x +\lambda \partial _y v_y +(\lambda +2\mu ) \partial _z v_z,\quad \imath \omega \tau _{xy}= \mu (\partial _y v_x + \partial _x v_y). \end{aligned}$$

Therefore, in some sense, only six components of \(\tau (\textbf{r})\), i.e.,  \(\tau _{xx}(\textbf{r}),\tau _{yy}(\textbf{r}),\tau _{zz}(\textbf{r})\), \(\tau _{yz}(\textbf{r})\), \(\tau _{xz}(\textbf{r})\) and \(\tau _{xy}(\textbf{r})\), are actually needed to solve (1).

Definitions of \(J_2\) and \(J_3\) for 14 Bravais Lattices

For all 14 Bravais lattices, we can compute the QR factorization with column pivoting of \([\varvec{a}_1,\varvec{a}_2,\varvec{a}_3]\) such that

$$\begin{aligned} {[}\varvec{a}_1,\varvec{a}_2,\varvec{a}_3]\Pi =QR_3, \end{aligned}$$

where \(\Pi \) is a suitable permutation, Q is orthonormal and \(R_3\) is upper triangular. Define \(S:=\text{ diag }\big \{\text{ sign }(R_3(1,1)),\text{ sign }(R_3(2,2)),\text{ sign }(R_3(3,3))\big \}\) and

$$\begin{aligned} {[}\widetilde{\varvec{t}}_1,\widetilde{\varvec{t}}_2,\widetilde{\varvec{t}}_3]=SR_3, \end{aligned}$$

whereby three nonnegative scalars \(\rho _i\) (\(i = 1, 2, 3\)) are defined as follows:

$$\begin{aligned} \rho _1&= {\left\{ \begin{array}{ll} 0, &{} \quad \text{ if } \widetilde{\varvec{t}}_2(1) \ge 0, \\ 1, &{} \quad \text{ if } \widetilde{\varvec{t}}_2(1)< 0; \end{array}\right. } \ \rho _2 = {\left\{ \begin{array}{ll} 0, &{} \quad \text{ if } \widetilde{\varvec{t}}_3(1) \ge 0, \\ 1, &{} \quad \text{ if } \widetilde{\varvec{t}}_3(1)< 0; \end{array}\right. } \ \rho _3 = {\left\{ \begin{array}{ll} 0, &{} \quad \text{ if } \widetilde{\varvec{t}}_3(2) \ge 0, \\ 1, &{} \quad \text{ if } \widetilde{\varvec{t}}_3(2) < 0. \end{array}\right. } \end{aligned}$$

Furthermore, we define

$$\begin{aligned}{} & {} m_1:= \texttt{round}\left( \frac{\widetilde{\varvec{t}}_2(1) + \rho _1 \widetilde{\varvec{t}}_1(1)}{h_x} \right) \le n_1,\ m_2:= \texttt{round} \left( \frac{\widetilde{\varvec{t}}_3(1)+\rho _2 \widetilde{\varvec{t}}_1(1)}{h_x} \right)< n_1,\\{} & {} m_3:= \texttt{round} \left( \frac{\widetilde{\varvec{t}}_3(2)+\rho _3 \widetilde{\varvec{t}}_2(2)}{h_y}\right) < n_2, \end{aligned}$$

where round denotes rounding to the nearest integer. Given a wave vector \(\textbf{k}\), using these notations, matrices \(J_2\) and \(J_3\), with those in (10b) and (11b) for the FCC lattice as the special case, for all 14 Bravais lattices are defined as follows:

$$\begin{aligned} J_2=e^{\imath 2 \pi \textbf{k}\cdot (\rho _1 \widetilde{\varvec{t}}_1 + \widetilde{\varvec{t}}_2)} { \begin{bmatrix} &{} e^{-\imath 2\pi \textbf{k} \cdot \widetilde{\varvec{t}}_1} I_{m_1} \\ I_{n_1-m_1} &{} \end{bmatrix}}; \end{aligned}$$
  1. (i)

    for \(\widetilde{\varvec{t}}_3(2) \ge 0\) and \(m_{4} \equiv m_2 - m_1 \ge 0\),

    $$\begin{aligned} \hspace{-10mm} J_3 = { \begin{bmatrix} &{} e^{-\imath 2\pi \textbf{k}\cdot ({\widetilde{\varvec{t}}}_{2} + (\rho _{1} - \rho _{2}){\widetilde{\varvec{t}}}_{1})}I_{m_{3}}\otimes J_{2,m_4} \\ e^{\imath 2 \pi \rho _2 \textbf{k}\cdot \widetilde{\varvec{t}}_1} I_{n_{2} - m_{3}}\otimes J_{2,m_2} &{} \end{bmatrix}}; \end{aligned}$$
  2. (ii)

    for \(\widetilde{\varvec{t}}_3(2) \ge 0\) and \(m_{4} < 0\),

    $$\begin{aligned} J_3&={ \begin{bmatrix} &{} e^{-\imath 2\pi \textbf{k}\cdot ({\widetilde{\varvec{t}}}_{2} + (\rho _{1}-\rho _{2} - 1){\widetilde{\varvec{t}}}_{1})}I_{m_{3}}\otimes J_{2,n_1+m_4} \\ e^{\imath 2 \pi \rho _2 \textbf{k}\cdot \widetilde{\varvec{t}}_1} I_{n_{2} - m_{3}}\otimes J_{2,m_2} &{} \end{bmatrix}}; \end{aligned}$$
  3. (iii)

    for \(\widetilde{\varvec{t}}_3(2) < 0\) and \(m_{5} \equiv m_1 + m_2 \le n_{1}\),

    $$\begin{aligned} \hspace{-10mm} J_3 = { \begin{bmatrix} &{} e^{\imath 2 \pi \rho _2 \textbf{k}\cdot \widetilde{\varvec{t}}_1} I_{m_{3}}\otimes J_{2,m_2}\\ e^{\imath 2\pi \textbf{k}\cdot (\widetilde{\varvec{t}}_2+(\rho _2+\rho _1)\widetilde{\varvec{t}}_1)}I_{n_{2} - m_{3}}\otimes J_{2,m_5} &{} \end{bmatrix}}; \end{aligned}$$
  4. (iv)

    for \(\widetilde{\varvec{t}}_3(2) < 0\) and \(m_{5} > n_{1}\),

    $$\begin{aligned} J_3&={ \begin{bmatrix} &{} e^{\imath 2 \pi \rho _2 \textbf{k}\cdot \widetilde{\varvec{t}}_1} I_{m_{3}}\otimes J_{2,m_2}\\ e^{\imath 2\pi \textbf{k}\cdot (\widetilde{\varvec{t}}_2+(\rho _2+\rho _1-1)\widetilde{\varvec{t}}_1)}I_{n_{2} - m_{3}}\otimes J_{2,m_5-n_1} &{} \end{bmatrix}}, \end{aligned}$$

where \(J_{2,m} \equiv { \begin{bmatrix} &{} e^{-\imath 2\pi \textbf{k}\cdot \widetilde{\varvec{t}}_1} I_{m} \\ I_{n_1-m} &{} \end{bmatrix}}\).

Some Details on Derivations of Lemmas 3, 4 and Theorem 5

To derive eigendecompositions in Lemmas 3, 4 and Theorem 5 in Sect. 4.1, here we provide some necessary proofs and matrix properties.

Lemma 18

\({\begin{bmatrix} &{}\hspace{-0.5cm} e^{-\imath 2\pi \textbf{k}\cdot \varvec{a}_1} I_{q}\\ I_{n_1-q} &{} \end{bmatrix}}\!\!=\! (K_1^*)^q,q=1,\ldots ,n_1\), with \(K_1\) defined in (9). Hence, \(J_2\) defined in (10b) satisfies

$$\begin{aligned} J_2= J_2^{-*} = K_1^{-n_1/2}. \end{aligned}$$
(C1)

Proof

By applying mathematical induction with respect to q. \(\square \)

Corollary 19

\((I_{n_2}\!\otimes \! K_1)K_2\!=\!K_2(I_{n_2}\!\otimes \!K_1),C_1C_2=C_2C_1\) and \(C_1C_2^*=C_2^*C_1\).

Proof

By direct verification and using (C1), we have \((I_{n_2}\!\otimes \! K_1)K_2\!=\!K_2(I_{n_2}\!\otimes \!K_1)\) and \((I_{n_2}\!\otimes \! K_1)K_2^*\!=\!K_2^*(I_{n_2}\!\otimes \!K_1)\), therefore, \(C_1C_2=C_2C_1\) and \(C_1C_2^*=C_2^*C_1\), using the definitions of \(C_1\) and \(C_2\). \(\square \)

Lemma 20

It holds that \({\begin{bmatrix} &{}\hspace{-1cm} e^{-\imath 2\pi \textbf{k}\cdot \varvec{a}_2} I_{q}\otimes J_2^*\\ I_{n_2-q}\otimes I_{n_1} &{} \end{bmatrix}}=(K_2^*)^q\), \(q=1,\ldots ,n_2\), with \(K_2\) and \(J_2\) in (10b).

Proof

By applying mathematical induction with respect to q. \(\square \)

Corollary 21

With \(K_2\) and \(J_3\) in (10b) and (11b), respectively, we have

$$\begin{aligned} J_3 = K_2^{-n_2/3}(I_{n_2}\otimes K_1)^{-n_1/2}=(I_{n_2}\otimes K_1)^{-n_1/2}K_2^{-n_2/3}=J_3^{-*}. \end{aligned}$$
(C2)

Proof

\(J_3 (I_{n_2}\!\otimes \!K_1^{n_1/2})\!=\! J_3(I_{n_2}\!\otimes \! J_2^*)\!=\!(I_{n_2}\!\otimes \! K_1^{n_1/2})\! J_3\! =\! (I_{n_2}\!\otimes \! J_2^*)\! J_3\), which further equals \({\begin{bmatrix} &{} \hspace{-1.2cm}e^{-\imath 2\pi \textbf{k}\cdot \varvec{a}_2}\!I_{n_2/3}\otimes J_2^*\\ I_{2n_2/3}\otimes I_{n_1} &{} \end{bmatrix}} = (K_2^*)^{n_2/3}\), by Lemma 20. \(\square \)

Corollary 22

\(C_3\) commutes with \(C_1, C_1^*, C_2\) and \(C_2^*\).

Proof

By (C2), \(J_3\) commutes with \(I_{n_2}\otimes K_1, I_{n_2}\otimes K_1^*, K_2\) and \(K_2^*\), hence, by direct verification, we have \(C_3 C_\ell =C_\ell C_3\) and \(C_3C_\ell ^*=C_\ell ^*C_3\), \(\ell =1,2\). \(\square \)

Theorem 23

\(\{C_\ell , C_\ell ^*\}_{\ell =1}^3\) is a set of commutative matrices.

Proof

By Corollary 19, Corollary 22 and the normality of \(C_1,C_2\) and \(C_3\). \(\square \)

Therefore, \(C_\ell \) and \(C_\ell ^*\), \(\ell =1,2,3\), can be simultaneously diagonalized by a common unitary matrix. which is determined instantly.

Lemma 24

([30]) Given \(p,q\in \mathbb {N}\), let \(M(x)=\sum _{s=0}^{q-1}x^s M_s + x^q I_p\) with \(M_s\in \mathbb {C}^{p\times p},s=0,1,\ldots ,q-1\), then \(\det M(x) = \det (xI_{mq} - C_{BF})\), with

$$\begin{aligned} C_{BF}:= \begin{bmatrix} 0 &{} \quad I_p &{} \quad \cdots &{} \quad 0 \\ \vdots &{} \quad \vdots &{} \quad \ddots &{} \quad \vdots \\ 0 &{} \quad 0 &{} \quad \cdots &{} \quad I_p \\ -M_0 &{} \quad -M_1 &{} \quad \cdots &{} \quad -M_{q-1} \\ \end{bmatrix}. \end{aligned}$$

Moreover, if \(\textbf{x}\in \mathbb {C}^p\) and \(\beta _0\in \mathbb {C}\) satisfy \(M(\beta _0)\textbf{x}=0\), then the eigenvector of \(C_{BF}\) associated with the eigenvalue \(\beta _0\) is \([\beta _0^0,\ldots ,\beta _0^{q-1}]^\top \otimes \textbf{x}\).

Proof of Lemma 3

By direct verification, and noting that \(K_1\) is the companion matrix of the monic polynomial \((x^{n_1} - e^{\imath 2\pi \textbf{k}\cdot \varvec{a}_1})\). Moreover, for \(i,i'\in \mathbb {N}_1\) but \(i\ne i'\), we have \(e^{\imath \theta _i}\ne e^{\imath \theta _{i'}}\), then \(\textbf{x}_i^*\textbf{x}_{i'}=0\), since \(K_1\) is normal. \(\square \)

Proof of Lemma 4

Note that \(K_2\) defined in (10b) can be seen as the block companion matrix of the monic matrix polynomial \((x^{n_2}I_{n_1}-e^{\imath 2\pi \textbf{k}\cdot \varvec{a}_2}J_2)\). Hence, by (C1), Lemma 24 and Lemma 3, \(\det (x^{n_2}I_{n_1}-e^{\imath 2\pi \textbf{k}\cdot \varvec{a}_2}J_2)=0\) if and only if \(x^{n_2}= e^{\imath n_1\theta _i/2}\) for \(i\in \mathbb {N}_1\), i.e.,  \(x=e^{\imath \theta _{ji}}\) with \(\theta _{ji}\) defined in (19a), and the associated eigenvector of \(K_2\) is just \(\textbf{y}_{ji}\) for \(i\in \mathbb {N}_1, j\in \mathbb {N}_2\). Due to the orthogonality of \(\textbf{x}_i\), we have \((\textbf{y}_{j'i'}\otimes \textbf{x}_{i'})^*(\textbf{y}_{ji}\otimes \textbf{x}_i) =0\) if \(i'\ne i\). Moreover, for \(j,j'\in \mathbb {N}_2\) but \(j\ne j'\), we have \(e^{\imath \theta _{ji}}\ne e^{\imath \theta _{j'i}}\), then \((\textbf{y}_{ji}\otimes \textbf{x}_{i})^*(\textbf{y}_{j'i}\otimes \textbf{x}_{i})=0\), since \(K_2\) is normal. The eigen-decomposition of \(K_3\) can be similarly found. \(\square \)

Proof of Theorem 5

By Lemma 4, T consists of n orthonormal columns, hence is unitary. Moreover, (21) can be directly verified using (9), (10a), (11a), Lemmas 3, 4 and the properties of the Kronecker product. \(\square \)

Computating the WSVD of \(\Phi _m\)

Here, we briefly describe the numerical procedures to compute the WSVD of \(\Phi _m\) in (24b). Specifically, given a HPD matrix \(\Psi \!\in \!\mathbb {C}^{6\times 6}\), after multiplying \(\Phi _m\) with \(\Psi ^{1/2}\), we compute the SVD of \(\Phi _m\Psi ^{1/2}\), i.e., 

$$\begin{aligned} \Phi _m\Psi ^{1/2}\!=\!P_m\texttt{diag}(\sigma _{m,1},\sigma _{m,2},\sigma _{m,3})\widetilde{Q}_m^*,\;\text{ with }\; P_m^*P_m\!=\!I_3\!=\!\widetilde{Q}_m^*\widetilde{Q}_m, \end{aligned}$$
(D3)

then we compute \(Q_m:=\Psi ^{-1/2}{\widetilde{Q}}_m\). Now, it is easy to see that \(Q_m\) satisfies \(Q_m^{*}\Psi Q_m=I_3\) and \(\Phi _m=P_m\texttt{diag}(\sigma _{1,m},\sigma _{2,m},\sigma _{3,m})Q_m^{*}\). In other words, the WSVD (25) of \(\Phi _m\) is obtained. In particular, if \(\Psi \) is set to \((\lambda _0 {\textbf{1}}_{3\times 3}+2\mu _0I_3)\oplus \mu _0 I_3\) following (38b), then its HPD square root and inverse square root are

$$\begin{aligned} \Psi ^{1/2}&=\left( (\sqrt{3\lambda _0+2\mu _0}-\sqrt{2\mu _0}){\textbf{1}}_{3\times 3}+ I_3\sqrt{2\mu _0}\right) \oplus I_3\sqrt{\mu _0}, \end{aligned}$$
(D4a)
$$\begin{aligned} \Psi ^{-1/2}&=\left( (1/\sqrt{3\lambda _0+2\mu _0}-1/\sqrt{2\mu _0}){\textbf{1}}_{3\times 3}+I_3/\sqrt{2\mu _0} \right) \oplus I_3/\sqrt{\mu _0}, \end{aligned}$$
(D4b)

respectively.

Proof of Corollary 11

Recall that it is claimed in Corollary 11 that \(\Psi \) in (38b) along with (36b) changes the RHS of (31) into (39), i.e., 

$$\begin{aligned} \kappa ({\mathcal {W}}^{-1/2}(\mathcal {V}_v\oplus \mathcal {V}_f)\mathcal W^{-1/2})\!=\!\frac{\max \!\left( \!\left\{ \frac{3\lambda _\ell +2\mu _\ell }{3\lambda _0+2\mu _0}\!\right\} _{\ell =1}^2\!\bigcup \!\left\{ \frac{\mu _\ell }{\mu _0}\!\right\} _{\ell =1}^2 \right) }{\min \!\left( \!\left\{ \frac{3\lambda _\ell +2\mu _\ell }{3\lambda _0+2\mu _0}\!\right\} _{\ell =1}^2\!\bigcup \!\left\{ \frac{\mu _\ell }{\mu _0}\!\right\} _{\ell =1}^2\right) }<\frac{\kappa (\mathcal {V}_v\oplus \mathcal {V}_f)}{2}, \end{aligned}$$

which is proved as follows.

Proof

Denote \(\Psi _{3\times 3}:=\lambda _0 {\textbf{1}}_{3\times 3}+2\mu _0I_3\). Following (33), eigenvalues of \(\mathcal W^{-1/2}(\mathcal {V}_v\oplus \mathcal {V}_f){\mathcal {W}}^{-1/2}\) are \(\mu _1/\mu _0, \mu _2/\mu _0\) and union of eigenvalues \(\beta _m\) of \(\Psi _{3\times 3}^{-1/2}(L_{v,mm}{\textbf{1}}_{3\times 3}+2M_{v,mm} I_3)\Psi _{3\times 3}^{-1/2}\) for \(m=1,\ldots ,n\). It is easy to see

$$\begin{aligned} 0&=\det \left( (L_{v,mm}{\textbf{1}}_{3\times 3}+2M_{v,mm} I_3)-\beta _m\Psi _{3\times 3}\right) \\&=4(M_{v,mm} - \beta _m\mu _0)^2(3L_{v,mm}+2M_{v,mm}-\beta _m(3\lambda _0+2\mu _0)), \end{aligned}$$

thus \(\beta _m= \tfrac{3L_{v,mm}+2M_{v,mm}}{3\lambda _0+2\mu _0},\; \tfrac{M_{v,mm}}{\mu _0}\), where \(L_{v,mm},M_{v,mm}\) can be either \(\lambda _1,\mu _1\) or \(\lambda _2,\mu _2\). Hence, the equality in (39) holds by definition.

Without loss of generality, let \(\mu _1<\mu _2\), which, in view of (35), implies

$$\begin{aligned} \kappa (\mathcal {V}_v\oplus \mathcal {V}_f)\ge \tfrac{3\lambda _1+2\mu _1}{\mu _1}, \quad \kappa (\mathcal {V}_v\oplus \mathcal {V}_f)\ge \tfrac{3\lambda _2+2\mu _2}{\mu _1}. \end{aligned}$$
(E5)

If \(\mu _0=\mu _1\) and \(\lambda _0=\lambda _1\), we have \(\mu _2 / \mu _0 = \mu _2/\mu _1>1\), \((3\lambda _2+2\mu _2)/(3\lambda _0+2\mu _0)=(3\lambda _2+2\mu _2)/(3\lambda _1+2\mu _1)\) and \(\mu _1/\mu _0=1=(3\lambda _1+2\mu _1)/(3\lambda _0+2\mu _0)\). Then \(\mu _\ell /\mu _0 \) and \((3\lambda _\ell +2\mu _\ell )/(3\lambda _0+2\mu _0)\), \(\ell =1,2\), can be arranged in three possible orders as follows:

  1. 1.

    \(1\le (3\lambda _2+2\mu _2)/(3\lambda _1+2\mu _1)\le \mu _2/\mu _1\), which, with (E5), implies

    $$\begin{aligned} \kappa ({\mathcal {W}}^{-1/2}(\mathcal {V}_v\oplus \mathcal {V}_f)\mathcal W^{-1/2}) = \tfrac{\mu _2}{\mu _1}< \tfrac{1}{2}\left( \tfrac{2\mu _2}{\mu _1}+\tfrac{3\lambda _2}{\mu _1}\right) \le \tfrac{\kappa (\mathcal {V}_v\oplus \mathcal {V}_f)}{2}; \end{aligned}$$
  2. 2.

    \(1<\mu _2/\mu _1\le (3\lambda _2+2\mu _2)/(3\lambda _1+2\mu _1)\), which, with (E5), implies

    $$\begin{aligned} \kappa ({\mathcal {W}}^{-1/2}(\mathcal {V}_v\oplus \mathcal {V}_f)\mathcal W^{-1/2})= \tfrac{3\lambda _2+2\mu _2}{3\lambda _1+2\mu _1}< \tfrac{1}{2}\tfrac{3\lambda _2+2\mu _2}{\mu _1}\le \tfrac{\kappa (\mathcal {V}_v\oplus \mathcal {V}_f)}{2}; \end{aligned}$$
  3. 3.

    \((3\lambda _2+2\mu _2)/(3\lambda _1+2\mu _1)\le 1<\mu _2/\mu _1\), which, with (E5), implies

    $$\begin{aligned} \kappa ({\mathcal {W}}^{-1/2}(\mathcal {V}_v\oplus \mathcal {V}_f){\mathcal {W}}^{-1/2})&= \tfrac{\mu _2}{\mu _1}\tfrac{3\lambda _1+2\mu _1}{3\lambda _2+2\mu _2}=\left( \tfrac{3\lambda _2+2\mu _2}{\mu _2}\right) ^{-1}\tfrac{3\lambda _1+2\mu _1}{\mu _1} \\&<\tfrac{1}{2}\tfrac{3\lambda _1+2\mu _1}{\mu _1}\le \tfrac{\kappa (\mathcal {V}_v\oplus \mathcal {V}_f)}{2}. \end{aligned}$$

On the other hand, if \(\mu _0=\mu _2\) and \(\lambda _0=\lambda _2\), we can similarly show that \(\kappa (\mathcal A)<\kappa (\mathcal {V}_v\oplus \mathcal {V}_f)/2\). Therefore, the inequality in (39) holds. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, XL., Tian, H., Li, T. et al. Fast SVD-Based Linear Elastic Eigenvalue Problem Solver for Band Structures of 3D Phononic Crystals. J Sci Comput 99, 20 (2024). https://doi.org/10.1007/s10915-024-02483-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02483-8

Keywords

Navigation