Author:
Mizuguchi Makoto,Nakao Mitsuhiro T.,Sekine Kouta,Oishi Shin’ichi
Abstract
AbstractIn this paper, we propose $$L^2(J;H^1_0(\Omega ))$$
L
2
(
J
;
H
0
1
(
Ω
)
)
and $$L^2(J;L^2(\Omega ))$$
L
2
(
J
;
L
2
(
Ω
)
)
norm error estimates that provide the explicit values of the error constants for the semi-discrete Galerkin approximation of the linear heat equation. The derivation of these error estimates shows the convergence of the approximation to the weak solution of the linear heat equation. Furthermore, explicit values of the error constants for these estimates play an important role in the computer-assisted existential proofs of solutions to semi-linear parabolic partial differential equations. In particular, the constants provided in this paper are better than the existing constants and, in a sense, the best possible.
Funder
Japan Science and Technology Agency
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,General Engineering,Theoretical Computer Science,Software,Applied Mathematics,Computational Mathematics,Numerical Analysis
Reference18 articles.
1. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, 2nd edn. Springer, New York (2007)
2. Chrysafinos, K., Hou, L.S.: Error estimates for semidiscrete finite element approximations of linear and semilinear parabolic equation under minimal regularity assumptions. SIAM J. Numer. Anal. 40, 282–306 (2002). https://doi.org/10.1137/S0036142900377991
3. Evans, L.: Partial Differential Equations, 2nd edn. American Mathematical Society, USA (2010)
4. Grisvard, P.: Elliptic problems in nonsmooth domains. Soc. Ind. Appl. Math. (2011). https://doi.org/10.1137/1.9781611972030
5. Hashimoto, K., Kimura, T., Minamoto, T., Nakao, M.T.: Constructive error analysis of a full-discrete finite element method for the heat equation. Jpn. J. Ind. Appl. Math. (2019). https://doi.org/10.1007/s13160-019-00362-6
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献