Stable and Accurate Filtering Procedures

Author:

Lundquist Tomas,Nordström JanORCID

Abstract

AbstractHigh frequency errors are always present in numerical simulations since no difference stencil is accurate in the vicinity of the $$\pi $$π-mode. To remove the defective high wave number information from the solution, artificial dissipation operators or filter operators may be applied. Since stability is our main concern, we are interested in schemes on summation-by-parts (SBP) form with weak imposition of boundary conditions. Artificial dissipation operators preserving the accuracy and energy stability of SBP schemes are available. However, for filtering procedures it was recently shown that stability problems may occur, even for originally energy stable (in the absence of filtering) SBP based schemes. More precisely, it was shown that even the sharpest possible energy bound becomes very weak as the number of filtrations grow. This suggest that successful filtering include a delicate balance between the need to remove high frequency oscillations (filter often) and the need to avoid possible growth (filter seldom). We will discuss this problem and propose a remedy.

Funder

Linköping University

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,General Engineering,Theoretical Computer Science,Software,Applied Mathematics,Computational Mathematics,Numerical Analysis

Reference10 articles.

1. Frenander, H., Nordström, J.: Spurious solutions for the advection–diffusion equation using wide stencils for approximating the second derivative. Numer. Methods Partial Differ. Equ. 34(2), 501–517 (2018)

2. Kennedy, C.A., Carpenter, M.: Comparison of several numerical methods for simulation of compressible shear layers. NASA Technical Paper, vol. 3484 (1997)

3. Kreiss, H.O., Scherer, G.: Finite element and finite difference methods for hyperbolic partial differential equations. In: De Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equation. Academic Press, New York (1974)

4. Linders, V., Lundquist, T., Nordström, J.: On the order of accuracy of finite difference operators on diagonal norm based summation-by-parts form. SIAM J. Numer. Anal. 56, 1048–1063 (2018)

5. Mattsson, K., Carpenter, M.H.: Stable and accurate interpolation operators for high-order multiblock finite difference methods. SIAM J. Sci. Comput. 32, 2298–2320 (2010)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3