A Time-Continuous Embedding Method for Scalar Hyperbolic Conservation Laws on Manifolds

Author:

Wang Yinghua,Wang Bao-Shan,Ling Leevan,Don Wai Sun

Abstract

AbstractA time-continuous (tc-)embedding method is first proposed for solving nonlinear scalar hyperbolic conservation laws with discontinuous solutions (shocks and rarefaction waves) on codimension 1, connected, smooth, and closed manifolds (surface PDEs or SPDEs in $${\mathbb {R}}^2$$ R 2 and $${\mathbb {R}}^3$$ R 3 ). The new embedding method improves upon the classical closest point (cp-)embedding method, which requires re-establishments of the constant-along-normal (CAN-)property of the extension function at every time step, in terms of accuracy and efficiency, by incorporating the CAN-property analytically and explicitly in the embedding equation. The tc-embedding SPDEs are solved by the second-order nonlinear central finite volume scheme with a nonlinear minmod slope limiter in space, and the third-order total variation diminished Runge-Kutta scheme in time. An adaptive nonlinear essentially non-oscillatory polynomial interpolation is used to obtain the solution values at the ghost cells. Numerical results in solving the linear wave equation and the Burgers’ equation show that the proposed tc-embedding method has better accuracy, improved resolution, and reduced CPU times than the classical cp-embedding method. The Burgers’ equation, the traffic flow problem, and the Buckley-Leverett equation are solved to demonstrate the robust performance of the tc-embedding method in resolving fine-scale structures efficiently even in the presence of a shock and the essentially non-oscillatory capturing of shocks and rarefaction waves on simple and complex shaped one-dimensional manifolds. Burgers’ equation is also solved on the two-dimensional torus-shaped and spherical-shaped manifolds.

Funder

National Natural Science Foundation of China

Hong Kong Research Grant Council

Natural Science Foundation of Shandong Province

Ocean University of China

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,General Engineering,Theoretical Computer Science,Software,Applied Mathematics,Computational Mathematics,Numerical Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3