Abstract
AbstractIn this work, we present a novel numerical discretization of a variable pressure multilayer shallow water model. The model can be written as a hyperbolic PDE system and allows the simulation of density driven gravity currents in a shallow water framework. The proposed discretization consists in an unlimited arbitrary high order accurate (ADER) Discontinuous Galerkin (DG) method, which is then limited with the MOOD paradigm using an a posteriori subcell finite volume limiter. The resulting numerical scheme is arbitrary high order accurate in space and time for smooth solutions and does not destroy the natural subcell resolution inherent in the DG methods in the presence of strong gradients or discontinuities. A numerical strategy to preserve non-trivial stationary solutions is also discussed. The final method is very accurate in smooth regions even using coarse or very coarse meshes, as shown in the numerical simulations presented here. Finally, a comparison with a laboratory test, where empirical data are available, is also performed.
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,General Engineering,Theoretical Computer Science,Software,Applied Mathematics,Computational Mathematics,Numerical Analysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献