Abstract
AbstractWe develop flux globalization based well-balanced central-upwind schemes for hydrodynamic equations with general free energy. The proposed schemes are well-balanced in the sense that they are capable of exactly preserving quite complicated steady-state solutions and also exactly capturing traveling waves, even when vacuum regions are present. In order to accurately track interfaces of the vacuum regions and near vacuum parts of the solution, we use the technique introduced in Chertock et al. (J Sci Comput 90:Paper No. 9, 2022) and design a hybrid approach: inside the no vacuum regions, we use the flux globalization based well-balanced central-upwind scheme, while elsewhere we implement the central-upwind scheme similar to the one proposed in Bollermann et al. (J Sci Comput 56:267–290, 2013) in the context of wet/dry fronts in the shallow water equations. The advantages of the proposed schemes are demonstrated on a number of challenging numerical examples.
Funder
National Natural Science Foundation of China
Guangdong Provincial Key Laboratory Of Computational Science And Material Design
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,General Engineering,Theoretical Computer Science,Software,Applied Mathematics,Computational Mathematics,Numerical Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献