Abstract
AbstractIn this work, we analyze the finite element method with arbitrary but fixed polynomial degree for the nonlinear Helmholtz equation with impedance boundary conditions. We show well-posedness and error estimates of the finite element solution under a resolution condition between the wave number k, the mesh size h and the polynomial degree p of the form “$$k(kh)^{p+1}$$
k
(
k
h
)
p
+
1
sufficiently small” and a so-called smallness of the data assumption. For the latter, we prove that the logarithmic dependence in h from the case $$p=1$$
p
=
1
in Wu and Zou (SIAM J Numer Anal 56(3):1338–1359, 2018) can be removed for $$p\ge 2$$
p
≥
2
. We show convergence of two different fixed-point iteration schemes. Numerical experiments illustrate our theoretical results and compare the robustness of the iteration schemes with respect to the size of the nonlinearity and the right-hand side data.
Funder
Deutsche Forschungsgemeinschaft
Klaus-Tschira-Stiftung
Rheinische Friedrich-Wilhelms-Universität Bonn
Publisher
Springer Science and Business Media LLC
Reference27 articles.
1. Baruch, G., Fibich, G., Tsynkov, S.: A high-order numerical method for the nonlinear Helmholtz equation in multidimensional layered media. J. Comput. Phys. 228(10), 3789–3815 (2009). https://doi.org/10.1016/j.jcp.2009.02.014
2. Bernkopf, M., Chaumont-Frelet, T., Melenk, J.M.: Wavenumber-explicit stability and convergence analysis of hp finite element discretizations of Helmholtz problems in piecewise smooth media. arXiv preprint arXiv:2209.03601 (2022)
3. Chaumont-Frelet, T., Nicaise, S.: Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems. IMA J. Numer. Anal. 40(2), 1503–1543 (2020). https://doi.org/10.1093/imanum/drz020
4. Cummings, P., Feng, X.: Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations. Math. Models Methods Appl. Sci. 16(1), 139–160 (2006). https://doi.org/10.1142/S021820250600108X
5. Du, Y., Wu, H.: Preasymptotic error analysis of higher order FEM and CIP-FEM for Helmholtz equation with high wave number. SIAM J. Numer. Anal. 53(2), 782–804 (2015). https://doi.org/10.1137/140953125