Two Finite Element Approaches for the Porous Medium Equation That Are Positivity Preserving and Energy Stable

Author:

Vijaywargiya ArjunORCID,Fu Guosheng

Abstract

AbstractIn this work, we present the construction of two distinct finite element approaches to solve the porous medium equation (PME). In the first approach, we transform the PME to a log-density variable formulation and construct a continuous Galerkin method. In the second approach, we introduce additional potential and velocity variables to rewrite the PME into a system of equations, for which we construct a mixed finite element method. Both approaches are first-order accurate, mass conserving, and proved to be unconditionally energy stable for their respective energies. The mixed approach is shown to preserve positivity under a CFL condition, while a much stronger property of unconditional bound preservation is proved for the log-density approach. A novel feature of our schemes is that they can handle compactly supported initial data without the need for any perturbation techniques. Furthermore, the log-density method can handle unstructured grids in any number of dimensions, while the mixed method can handle unstructured grids in two dimensions. We present results from several numerical experiments to demonstrate these properties.

Funder

Division of Mathematical Sciences

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3