Abstract
AbstractRadial basis function methods are powerful tools in numerical analysis and have demonstrated good properties in many different simulations. However, for time-dependent partial differential equations, only a few stability results are known. In particular, if boundary conditions are included, stability issues frequently occur. The question we address in this paper is how provable stability for RBF methods can be obtained. We develop a stability theory for global radial basis function methods using the general framework of summation-by-parts operators often used in the Finite Difference and Finite Element communities. Although we address their practical construction, we restrict the discussion to basic numerical simulations and focus on providing a proof of concept.
Funder
Vetenskapsradet
University of Johannesburg
Gutenberg Forschungskolleg
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献