A Parallel Dynamic Asynchronous Framework for Uncertainty Quantification by Hierarchical Monte Carlo Algorithms

Author:

Tosi Riccardo,Amela Ramon,Badia Rosa M.,Rossi Riccardo

Abstract

AbstractThe necessity of dealing with uncertainties is growing in many different fields of science and engineering. Due to the constant development of computational capabilities, current solvers must satisfy both statistical accuracy and computational efficiency. The aim of this work is to introduce an asynchronous framework for Monte Carlo and Multilevel Monte Carlo methods to achieve such a result. The proposed approach presents the same reliability of state of the art techniques, and aims at improving the computational efficiency by adding a new level of parallelism with respect to existing algorithms: between batches, where each batch owns its hierarchy and is independent from the others. Two different numerical problems are considered and solved in a supercomputer to show the behavior of the proposed approach.

Funder

European Union’s Horizon 2020 research and innovation programme

Spanish Government

Generalitat de Catalunya

RES - Red Española de Supercomputación Intranet Area

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,General Engineering,Theoretical Computer Science,Software,Applied Mathematics,Computational Mathematics,Numerical Analysis

Reference37 articles.

1. Adams, B.M., Eldred, M.S., Geraci, G., Hooper R.W., Jakeman, J.D., Maupin, K.A., Monschke, J.A., Rushdi, A.A., Wildey, J.A.S., Swiler, L.P., M.T.: Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: version 6.10 user’s manual. Tech. rep., SAND2014-4633 Unlimited Release, July 2014. Updated May 15, 2019 (2014)

2. Amela, R., Ramon-Cortes, C., Ejarque, J., Conejero, J., Badia, R.M.: Executing linear algebra kernels in heterogeneous distributed infrastructures with PyCOMPSs. Oil & Gas Science and Technology-Revue d’IFP Energies nouvelles 73, 47 (2018). https://doi.org/10.2516/ogst/2018047

3. Amela, R., Ayoul-Guilmard, Q., Badia, R.M., Ganesh, S., Nobile, F., Rossi, R., Tosi, R.: ExaQUte XMC (2019). https://doi.org/10.5281/zenodo.3235833

4. Andre, M.S.: Aeroelastic modeling and simulation for the assessment of wind effects on a parabolic trough solar collector. Ph.D. thesis, Technische Universität München (2018)

5. Angelino, E., Kohler, E., Waterland, A., Seltzer, M., Adams, R.P.: Accelerating MCMC via parallel predictive prefetching. In: Uncertainty in Artificial Intelligence—Proceedings of the 30th Conference, UAI 2014 (2014)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3