1. Adams, B.M., Eldred, M.S., Geraci, G., Hooper R.W., Jakeman, J.D., Maupin, K.A., Monschke, J.A., Rushdi, A.A., Wildey, J.A.S., Swiler, L.P., M.T.: Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: version 6.10 user’s manual. Tech. rep., SAND2014-4633 Unlimited Release, July 2014. Updated May 15, 2019 (2014)
2. Amela, R., Ramon-Cortes, C., Ejarque, J., Conejero, J., Badia, R.M.: Executing linear algebra kernels in heterogeneous distributed infrastructures with PyCOMPSs. Oil & Gas Science and Technology-Revue d’IFP Energies nouvelles 73, 47 (2018). https://doi.org/10.2516/ogst/2018047
3. Amela, R., Ayoul-Guilmard, Q., Badia, R.M., Ganesh, S., Nobile, F., Rossi, R., Tosi, R.: ExaQUte XMC (2019). https://doi.org/10.5281/zenodo.3235833
4. Andre, M.S.: Aeroelastic modeling and simulation for the assessment of wind effects on a parabolic trough solar collector. Ph.D. thesis, Technische Universität München (2018)
5. Angelino, E., Kohler, E., Waterland, A., Seltzer, M., Adams, R.P.: Accelerating MCMC via parallel predictive prefetching. In: Uncertainty in Artificial Intelligence—Proceedings of the 30th Conference, UAI 2014 (2014)