ReLU Neural Network Galerkin BEM

Author:

Aylwin Rubén,Henríquez Fernando,Schwab Christoph

Abstract

AbstractWe introduce Neural Network (NN for short) approximation architectures for the numerical solution of Boundary Integral Equations (BIEs for short). We exemplify the proposed NN approach for the boundary reduction of the potential problem in two spatial dimensions. We adopt a Galerkin formulation-based method, in polygonal domains with a finite number of straight sides. Trial spaces used in the Galerkin discretization of the BIEs are built by using NNs that, in turn, employ the so-called Rectified Linear Units (ReLU) as the underlying activation function. The ReLU-NNs used to approximate the solutions to the BIEs depend nonlinearly on the parameters characterizing the NNs themselves. Consequently, the computation of a numerical solution to a BIE by means of ReLU-NNs boils down to a fine tuning of these parameters, in network training. We argue that ReLU-NNs of fixed depth and with a variable width allow us to recover well-known approximation rate results for the standard Galerkin Boundary Element Method (BEM). This observation hinges on existing well-known properties concerning the regularity of the solution of the BIEs on Lipschitz, polygonal boundaries, i.e. accounting for the effect of corner singularities, and the expressive power of ReLU-NNs over different classes of functions. We prove that shallow ReLU-NNs, i.e. networks having a fixed, moderate depth but with increasing width, can achieve optimal order algebraic convergence rates. We propose novel loss functions for NN training which are obtained using computable, local residual a posteriori error estimators with ReLU-NNs for the numerical approximation of BIEs. We find that weighted residual estimators, which are reliable without further assumptions on the quasi-uniformity of the underlying mesh, can be employed for the construction of computationally efficient loss functions for ReLU-NN training. The proposed framework allows us to leverage on state-of-the-art computational deep learning technologies such as TENSORFLOW and TPUs for the numerical solution of BIEs using ReLU-NNs. Exploratory numerical experiments validate our theoretical findings and indicate the viability of the proposed ReLU-NN Galerkin BEM approach.

Funder

EPFL Lausanne

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,General Engineering,Theoretical Computer Science,Software,Applied Mathematics,Computational Mathematics,Numerical Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Disease Recognition of Plants Leaves in Northern Shaanxi Based on Siamese Networks;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

2. De Rham compatible Deep Neural Network FEM;Neural Networks;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3