Unisolvence of Symmetric Node Patterns for Polynomial Spaces on the Simplex

Author:

Mulder W. A.ORCID

Abstract

AbstractFinite elements with polynomial basis functions on the simplex with a symmetric distribution of nodes should have a unique polynomial representation. Unisolvence not only requires that the number of nodes equals the number of independent polynomials spanning a polynomial space of a given degree, but also that the Vandermonde matrix controlling their mapping to the Lagrange interpolating polynomials can be inverted. Here, a necessary condition for unisolvence is presented for polynomial spaces that have non-decreasing degrees when going from the edges and the various faces to the interior of the simplex. It leads to a proof of a conjecture on a necessary condition for unisolvence, requiring the node pattern to be the same as that of the regular simplex.

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,General Engineering,Theoretical Computer Science,Software,Applied Mathematics,Computational Mathematics,Numerical Analysis

Reference20 articles.

1. Crouzeix, M., Raviart, P.-A.: Conforming and non conforming finite element methods for solving the stationary Stokes equations. R.A.I.R.O. 7(R3), 33–75 (1973). https://doi.org/10.1051/m2an/197307R300331

2. Zienkiewicz, O.C.: La Méthode des éléments Finis Appliquée à L’art de L’ingénieur. Ediscience, Paris (1973)

3. Hillion, P.: Numerical integration on a triangle. Int. J. Numer. Methods Eng. 11(5), 797–815 (1977). https://doi.org/10.1002/nme.1620110504

4. Akin, J.E.: Finite Element Analysis for Undergraduates. Academic Press, London (1986)

5. Cohen, G., Joly, P., Tordjman, N.: Higher order triangular finite elements with mass lumping for the wave equation. In: Cohen, G., Bécache, E., Joly, P., Roberts, J.E. (eds.) Proceedings of the Third International Conference on Mathematical and Numerical Aspects of Wave Propagation, pp. 270–279. SIAM, Philadelphia, PA, USA (1995)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3