Abstract
AbstractThe well-suited discretization of the Keller–Segel equations for chemotaxis has become a very challenging problem due to the convective nature inherent to them. This paper aims to introduce a new upwind, mass-conservative, positive and energy-dissipative discontinuous Galerkin scheme for the Keller–Segel model. This approach is based on the gradient-flow structure of the equations. In addition, we show some numerical experiments in accordance with the aforementioned properties of the discretization. The numerical results obtained emphasize the really good behaviour of the approximation in the case of chemotactic collapse, where very steep gradients appear.
Funder
University of Tennessee at Chattanooga
Universidad de Cádiz
FEDER/Ministerio de Ciencia e Innovación - Agencia Estatal de Investigación, Spain
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,General Engineering,Theoretical Computer Science,Software,Applied Mathematics,Computational Mathematics,Numerical Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献