Abstract
AbstractIn this article, a quasi-linear semi-discrete analysis of shock capturing schemes in two dimensional wavenumber space is proposed. Using the dispersion relation of the two dimensional advection and linearized Euler equations, the spectral properties of a spatial scheme can be quantified in two dimensional wavenumber space. A hybrid scheme (HYB-MDCD-TENO6) which combines the merits of the minimum dispersion and controllable dissipation (MDCD) scheme with the targeted essentially non-oscillatory (TENO) scheme was developed and tested. Using the two dimensional analysis framework, the scheme was spectrally optimized in such a way that the linear part of the scheme can be separately optimized for its dispersion and dissipation properties. In order to compare its performance against existing schemes, the proposed scheme as well as the baseline schemes were tested against a series of benchmark test cases. It was found that the HYB-MDCD-TENO6 scheme provides similar or better resolution as compared to the baseline TENO6 schemes for the same grid size.
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,General Engineering,Theoretical Computer Science,Software,Applied Mathematics,Computational Mathematics,Numerical Analysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献