Abstract
AbstractThe focus of the present research is on the analysis of local energy stability of high-order (including split-form) summation-by-parts methods, with e.g. two-point entropy-conserving fluxes, approximating non-linear conservation laws. Our main finding is that local energy stability, i.e., the numerical growth rate does not exceed the growth rate of the continuous problem, is not guaranteed even when the scheme is non-linearly stable and that this may have adverse implications for simulation results. We show that entropy-conserving two-point fluxes are inherently locally energy unstable, as they can be dissipative or anti-dissipative. Unfortunately, these fluxes are at the core of many commonly used high-order entropy-stable extensions, including split-form summation-by-parts discontinuous Galerkin spectral element methods (or spectral collocation methods). For the non-linear Burgers equation, we further demonstrate numerically that such schemes cause exponential growth of errors during the simulation. Furthermore, we encounter a similar abnormal behaviour for the compressible Euler equations, for a smooth exact solution of a density wave. Finally, for the same case, we demonstrate numerically that other commonly known split-forms, such as the Kennedy and Gruber splitting, are also locally energy unstable.
Funder
H2020 European Research Council
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,General Engineering,Theoretical Computer Science,Software,Applied Mathematics,Computational Mathematics,Numerical Analysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献