Sequential Image Recovery Using Joint Hierarchical Bayesian Learning

Author:

Xiao Yao,Glaubitz JanORCID

Abstract

AbstractRecovering temporal image sequences (videos) based on indirect, noisy, or incomplete data is an essential yet challenging task. We specifically consider the case where each data set is missing vital information, which prevents the accurate recovery of the individual images. Although some recent (variational) methods have demonstrated high-resolution image recovery based on jointly recovering sequential images, there remain robustness issues due to parameter tuning and restrictions on the type of sequential images. Here, we present a method based on hierarchical Bayesian learning for the joint recovery of sequential images that incorporates prior intra- and inter-image information. Our method restores the missing information in each image by “borrowing” it from the other images. More precisely, we couple sequential images by penalizing their pixel-wise difference. The corresponding penalty terms (one for each pixel and pair of subsequent images) are treated as weakly-informative random variables that favor small pixel-wise differences but allow occasional outliers. As a result, all of the individual reconstructions yield improved accuracy. Our method can be used for various data acquisitions and allows for uncertainty quantification. Some preliminary results indicate its potential use for sequential deblurring and magnetic resonance imaging.

Funder

U.S. Air Force

Office of Naval Research

US Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,General Engineering,Theoretical Computer Science,Software,Applied Mathematics,Computational Mathematics,Numerical Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computationally Efficient Sampling Methods for Sparsity Promoting Hierarchical Bayesian Models;SIAM/ASA Journal on Uncertainty Quantification;2024-06-07

2. Leveraging Joint Sparsity in Hierarchical Bayesian Learning;SIAM/ASA Journal on Uncertainty Quantification;2024-05-24

3. Sequential Edge Detection Using Joint Hierarchical Bayesian Learning;Journal of Scientific Computing;2023-07-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3