Guidelines for RBF-FD Discretization: Numerical Experiments on the Interplay of a Multitude of Parameter Choices

Author:

Le Borne SabineORCID,Leinen Willi

Abstract

AbstractThere exist several discretization techniques for the numerical solution of partial differential equations. In addition to classical finite difference, finite element and finite volume techniques, a more recent approach employs radial basis functions to generate differentiation stencils on unstructured point sets. This approach, abbreviated by RBF-FD (radial basis function-finite difference), has gained in popularity since it enjoys several advantages: It is (relatively) straightforward, does not require a mesh and generalizes easily to higher spatial dimensions. However, its application is not quite as blackbox as it may appear at first sight. The computed solution might suffer severely from various sources of errors if RBF-FD parameters are not selected carefully. Through comprehensive numerical experiments, we study the influence of several of these parameters on the condition numbers of intermediate (local) weight matrices, on the condition number of the resulting (global) stiffness matrix and ultimately on the approximation error of the computed discrete solution to the partial differential equation. The parameters of investigation include the type of RBF (and its shape or other parameters if applicable), the degree of polynomial augmentation, the discretization stencil size, the underlying type of point set (structured/unstructured), and the total number of (interior and boundary) points to discretize the PDE, here chosen as a three-dimensional Poisson’s problem with Dirichlet boundary conditions. Numerical tests on a sphere as well as tests for the convection-diffusion equation are included in a supplement and demonstrate that the results obtained for the Laplace problem on a cube generalize to wider problem classes. The purpose of this paper is to provide a comprehensive survey on the various components of the basic algorithms for RBF-FD discretization and steer away from potential pitfalls such as computationally more expensive setups which not always lead to more accurate numerical solutions. We guide toward a compatible selection of the multitude of RBF-FD parameters in the basic version of RBF-FD. For many of its components we refer to the literature for more advanced versions.

Funder

Technische Universität Hamburg

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,General Engineering,Theoretical Computer Science,Software,Applied Mathematics,Computational Mathematics,Numerical Analysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3