Abstract
AbstractIn this paper, Schur polynomials are used to provide a bidiagonal decomposition of polynomial collocation matrices. The symmetry of Schur polynomials is exploited to analyze the total positivity on some unbounded intervals of a relevant class of polynomial bases. The proposed factorization is used to achieve relative errors of the order of the unit round-off when solving algebraic problems involving the collocation matrix of relevant polynomial bases, such as the Hermite basis. The numerical experimentation illustrates the accurate results obtained when using the findings of the paper.
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,General Engineering,Theoretical Computer Science,Software,Applied Mathematics,Computational Mathematics,Numerical Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献