Abstract
AbstractWe develop error estimates for the finite element approximation of elliptic partial differential equations on perturbed domains, i.e. when the computational domain does not match the real geometry. The result shows that the error related to the domain can be a dominating factor in the finite element discretization error. The main result consists of $$H^1$$
H
1
- and $$L^2$$
L
2
-error estimates for the Laplace problem. Theoretical considerations are validated by a computational example.
Funder
Bundesministerium für Bildung und Forschung
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,General Engineering,Theoretical Computer Science,Software,Applied Mathematics,Computational Mathematics,Numerical Analysis
Reference35 articles.
1. Allaire, G., Dapogny, C.: A deterministic approximation method in shape optimization under random uncertainties. J. Comput. Math. 1, 83–143 (2015)
2. Babuška, I., Chleboun, J.: Effects of uncertainties in the domain on the solution of neumann boundary value problems in two spatial dimensions. Math. Comput. 71(240), 1339–1370 (2002)
3. Babuška, I., Chleboun, J.: Effects of uncertainties in the domain on the solution of dirichlet boundary value problems. Numerische Mathematik 93(4), 583–610 (2003)
4. Barrenechea, G.R., González, C.: A stabilized finite element method for a fictitious domain problem allowing small inclusions. Numer. Methods Partial Differ. Equ. 34(1), 167–183 (2017)
5. Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38(4), 173–199 (2001)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Inverse problems in blood flow modeling: A review;International Journal for Numerical Methods in Biomedical Engineering;2022-05-24