1. Allen-Zhu, Z., Li, Y., Song Z.: A convergence theory for deep learning via over-parameterization. In: International Conference on Machine Learning, PMLR, ,pp. 242–252 (2019)
2. Arora, S., Du, S., Hu, W., Li, Z., Wang, R.: Fine-grained analysis of optimization and generalization for overparameterized two-layer neural networks. In: International Conference on Machine Learning, PMLR, pp. 322–332 (2019)
3. Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inf. Theory 39(3), 930–945 (1993)
4. Bates, D.J., Sommese, A.J., Hauenstein, J.D., Wampler, C.W.: Numerically Solving Polynomial Systems with Bertini. SIAM, Philadelphia (2013)
5. Cai, S., Mao, Z., Wang, Z., Yin, M., Karniadakis, G.E.: Physics-informed neural networks (PINNs) for fluid mechanics: a review. Acta Mech. Sin., pp. 1–12 (2022)