Author:
Guo Ruchi,Jiang Jiahua,Li Yi
Abstract
AbstractIn this work, we investigate the diffusive optical tomography (DOT) problem in the case that limited boundary measurements are available. Motivated by the direct sampling method (DSM) proposed in Chow et al. (SIAM J Sci Comput 37(4):A1658–A1684, 2015), we develop a deep direct sampling method (DDSM) to recover the inhomogeneous inclusions buried in a homogeneous background. In this method, we design a convolutional neural network to approximate the index functional that mimics the underling mathematical structure. The benefits of the proposed DDSM include fast and easy implementation, capability of incorporating multiple measurements to attain high-quality reconstruction, and advanced robustness against the noise. Numerical experiments show that the reconstruction accuracy is improved without degrading the efficiency, demonstrating its potential for solving the real-world DOT problems.
Funder
Directorate for Mathematical and Physical Sciences
ShanghaiTech University
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,General Engineering,Theoretical Computer Science,Software,Applied Mathematics,Computational Mathematics,Numerical Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献