Abstract
AbstractTotal variation diminishing multigrid methods have been developed for first order accurate discretizations of hyperbolic conservation laws. This technique is based on a so-called upwind biased residual interpolation and allows for algorithms devoid of spurious numerical oscillations in the transient phase. In this paper, we justify the introduction of such prolongation and restriction operators by rewriting the algorithm in a matrix-vector notation. This perspective sheds new light on multigrid procedures for hyperbolic problems and provides a direct extension for high order accurate difference approximations. The new multigrid procedure is presented, advantages and disadvantages are discussed and numerical experiments are performed.
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,General Engineering,Theoretical Computer Science,Software,Applied Mathematics,Computational Mathematics,Numerical Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献