Extension of Mathieu series and alternating Mathieu series involving the Neumann function $$Y_\nu $$

Author:

Parmar Rakesh K.,Milovanović Gradimir V.,Pogány Tibor K.

Abstract

AbstractThe main objective of this paper is to present a new extension of the familiar Mathieu series and the alternating Mathieu series S(r) and $${{\widetilde{S}}}(r)$$ S ~ ( r ) which are denoted by $${\mathbb {S}}_{\mu ,\nu }(r)$$ S μ , ν ( r ) and $$\widetilde{{\mathbb {S}}}_{\mu ,\nu }(r)$$ S ~ μ , ν ( r ) , respectively. The computable series expansions of their related integral representations are obtained in terms of the exponential integral $$E_1$$ E 1 , and convergence rate discussion is provided for the associated series expansions. Further, for the series $${\mathbb {S}}_{\mu ,\nu }(r)$$ S μ , ν ( r ) and $$\widetilde{{\mathbb {S}}}_{\mu ,\nu }(r)$$ S ~ μ , ν ( r ) , related expansions are presented in terms of the Riemann Zeta function and the Dirichlet Eta function, also their series built in Gauss’ $${}_2F_1$$ 2 F 1 functions and the associated Legendre function of the second kind $$Q_\mu ^\nu $$ Q μ ν are given. Our discussion also includes the extended versions of the complete Butzer–Flocke–Hauss Omega functions. Finally, functional bounding inequalities are derived for the investigated extensions of Mathieu-type series.

Funder

Óbuda University

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3