Abstract
AbstractFor a sequence $$M=(m_{i})_{i=0}^{\infty }$$
M
=
(
m
i
)
i
=
0
∞
of integers such that $$m_{0}=1$$
m
0
=
1
, $$m_{i}\ge 2$$
m
i
≥
2
for $$i\ge 1$$
i
≥
1
, let $$p_{M}(n)$$
p
M
(
n
)
denote the number of partitions of n into parts of the form $$m_{0}m_{1}\cdots m_{r}$$
m
0
m
1
⋯
m
r
. In this paper we show that for every positive integer n the following congruence is true: $$\begin{aligned} p_{M}(m_{1}m_{2}\cdots m_{r}n-1)\equiv 0\ \ \left( \textrm{mod}\ \prod _{t=2}^{r}\mathcal {M}(m_{t},t-1)\right) , \end{aligned}$$
p
M
(
m
1
m
2
⋯
m
r
n
-
1
)
≡
0
mod
∏
t
=
2
r
M
(
m
t
,
t
-
1
)
,
where $$\mathcal {M}(m,r):=\frac{m}{\textrm{gcd}\big (m,\textrm{lcm}(1,\ldots ,r)\big )}$$
M
(
m
,
r
)
:
=
m
gcd
(
m
,
lcm
(
1
,
…
,
r
)
)
. Our result answers a conjecture posed by Folsom, Homma, Ryu and Tong, and is a generalisation of the congruence relations for m-ary partitions found by Andrews, Gupta, and Rødseth and Sellers.
Publisher
Springer Science and Business Media LLC
Reference10 articles.
1. G.E. Andrews, The theory of partitions, Reprint of the 1976 original. Cambridge mathematical library (Cambridge University Press, Cambridge, 1998)
2. G.E. Andrews, E. Brietzke, Ø.J. Rødseth, J.A. Sellers, Arithmetic properties of m-ary partitions without gaps. Ann. Comb. 21(4), 495–506 (2017)
3. R.F. Churchhouse, Congruence properties of the binary partition function. Proc. Cambridge Philos. Soc. 66, 371–376 (1969)
4. A. Folsom, Y. Homma, J.H. Ryu, B. Tong, On a general class of non-squashing partitions. Discrete Math. 339(5), 1482–1506 (2016)
5. H. Gupta, On m-ary partitions. Math. Proc. Camb. Phil. Soc. 71, 343–345 (1972)