Publisher
Springer Science and Business Media LLC
Reference10 articles.
1. X.C. Ai, J.H. Chen, S.L. Zhang, H. Hu, Complete solutions of the simultaneous Pell equations $$x^2-24y^2=1$$ and $$y^2-pz^2=1$$. J. Number Theory 147, 103–108 (2015)
2. M.A. Bennett, On the number of solutions of simultaneous Pell equations. J. Reine Angew. Math. 498, 173–199 (1998)
3. M. Cipu, Pairs of Pell equations having at most one common solution in positive integers. Ann. Stiint. Univ. Ovidius Constanta Ser. Math. 15, 55–66 (2007)
4. M. Cipu, Explicit formula for the solution of simultaneous Pell equations $$x^2-(a^2-1)y^2=1,~y^2-bz^2=1$$. Proc. Am. Math. Soc. 146, 983–992 (2018)
5. M. Cipu, M. Mignotte, On the number of solutions to systems of Pell equations. J. Number Theory 125, 356–392 (2007)