Generation of rainfall data series by using the Markov Chain model in three selected sites in the Kurdistan Region, Iraq

Author:

Hajani EvanORCID,Sarma Gaheen

Abstract

AbstractRainfall forecasting can play a significant role in the planning and management of water resource systems. This study employs a Markov chain model to examine the patterns, distributions and forecast of annual maximum rainfall (AMR) data collected at three selected stations in the Kurdistan Region of Iraq using 32 years of 1990 to 2021 rainfall data. A stochastic process is used to formulate three states (i.e., decrease—"d"; stability—"s"; and increase—"i") in a given year for estimating quantitatively the probability of making a transition to any other one of the three states in the following year(s) and in the long run. In addition, the Markov model is also used to forecast the AMR data for the upcoming five years (i.e., 2022–2026). The results indicate that in the upcoming 5 years, the probability of the annual maximum rainfall becoming decreased is 44%, that becoming stable is 16%, and that becoming increased is 40%. Furthermore, it is shown that for the AMR data series, the probabilities will drop slowly from 0.433 to 0.409 in about 11 years, as indicated by the average data of the three stations. This study reveals that the Markov model can be used as an appropriate tool to forecast future rainfalls in such semi-arid areas as the Kurdistan Region of Iraq.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3