Mechanical characteristics of auxetic composite honeycomb sandwich structure under bending

Author:

Xu Hang Hang,Zhang Xue Gang,Han Dong,Jiang Wei,Zhang Yi,Luo Yu Ming,Ni Xi Hai,Teng Xing Chi,Xie Yi Min,Ren XinORCID

Abstract

AbstractAuxetic honeycomb sandwich structures (AHS) composed of a single material generally exhibit comparatively lower energy absorption (EA) and platform stress, as compared to traditional non-auxetic sandwich structures (TNS). To address this limitation, the present study examines the use of aluminum foam (AF) as a filling material in the re-entrant honeycomb sandwich structure (RS). Filling the AHS with AF greatly enhances both the EA and platform stress in comparison to filling the TNS with AF, while the auxetic composite honeycomb sandwich structure effectively addresses interface delamination observed in traditional non-auxetic composite sandwich structures. Subsequently, the positive–negative Poisson’s ratio coupling designs are proposed to strengthen the mechanical features of a single honeycomb sandwich structure. The analysis results show that the coupling structure optimizes the mechanical properties by leveraging the high bearing capacity of the hexagonal honeycomb and the great interaction between the re-entrant honeycomb and the filling material. In contrast with traditional non-auxetic sandwich structures, the proposed auxetic composite honeycomb sandwich structures demonstrate superior EA and platform stress performance, suggesting their immense potential for utilization in protective engineering.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Qinglan Project of Jiangsu Province of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3